extern i64 _rt_thread_start( u64 flags, void *stack_base, int *parent_tid, int *child_tid, void *tls, int (*thread_fn)(void *ctx), void *ctx ); static _RT_Status _rt_thread_current(_RT_Thread *thread) { thread->handle = (void *)((u64)__builtin_frame_address(0) & ~(cia_stack_size - 1)); return _RT_STATUS_OK; } static _RT_Status _rt_thread_create(_RT_Thread *thread, int (*thread_fn)(void *ctx), void *ctx) { // Create the memory for stack u64 mmap_prot = PROT_READ|PROT_WRITE; u64 mmap_flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE; void *stack_base = sys_mmap(0, 2*cia_stack_size, mmap_prot, mmap_flags, -1, 0); if((i64)stack_base < 0) { return _RT_ERROR_GENERIC; } void *stack = (u8*)stack_base + 2*cia_stack_size; // Find the TLS base and initialize the tls _LD_Thread_Block *tcb = (void *)((u64)((u8 *)stack - 1) & ~(cia_stack_size - 1)); tcb->stack_canary = 0x12345678deadbeef; u8 *tls_base = (u8 *)tcb - cia_tls_image_size; for(int i = 0; i < cia_tls_image_size; ++i) { tls_base[i] = ((u8 *)cia_tls_image_base)[i]; } // Initialize the _RT_Thread handle, which would point to // the TCB thread->handle = tcb; atomic_store_explicit(&tcb->thread_finished, 0, memory_order_relaxed); // Create the new thread u64 flags = 0; // flags |= CLONE_CHILD_CLEARTID; // flags |= CLONE_PARENT_SETTID; flags |= CLONE_FS; flags |= CLONE_FILES; flags |= CLONE_SIGHAND; flags |= CLONE_THREAD; flags |= CLONE_VM; flags |= CLONE_SYSVSEM; int *child_tid = (int *)&tcb->thread_id; int *parent_tid = (int *)&tcb->parent_id; *child_tid = 1; *parent_tid = 0; i64 ret = _rt_thread_start(flags, stack, parent_tid, child_tid, 0, thread_fn, ctx); if(ret < 0) { return _RT_ERROR_GENERIC; } return _RT_STATUS_OK; } void _rt_thread_finish(int exit_code) { _LD_Thread_Block *tcb = (void *)((u64)__builtin_frame_address(0) & ~(cia_stack_size - 1)); // Wait until the main thread decides what to do with the child thread u32 thread_behaviour = atomic_load_explicit(&tcb->thread_behaviour, memory_order_relaxed); while(thread_behaviour == _LD_THREAD_BEHAVIOUR_NOT_SET) { syscall(SYS_futex, &tcb->thread_behaviour, FUTEX_WAIT, _LD_THREAD_BEHAVIOUR_NOT_SET, NULL, 0, 0); thread_behaviour = atomic_load_explicit(&tcb->thread_behaviour, memory_order_relaxed); } // If main thread set this thread to be joined, we signal it that we're done here if(thread_behaviour == _LD_THREAD_BEHAVIOUR_JOIN) { atomic_store_explicit(&tcb->exit_code, exit_code, memory_order_relaxed); atomic_store_explicit(&tcb->thread_finished, 1, memory_order_release); syscall(SYS_futex, &tcb->thread_finished, FUTEX_WAKE, 0, NULL, 0, 0); sys_exit(exit_code); } else if(thread_behaviour == _LD_THREAD_BEHAVIOUR_DETACH) { // TODO: clean up the thread resources sys_exit(exit_code); } } static _RT_Status _rt_thread_join(_RT_Thread *thread, int *out_exit_code) { _LD_Thread_Block *tcb = thread->handle; // Signal the thread that we want it to be joined atomic_store_explicit(&tcb->thread_behaviour, _LD_THREAD_BEHAVIOUR_JOIN, memory_order_relaxed); syscall(SYS_futex, &tcb->thread_behaviour, FUTEX_WAKE, 0, NULL, 0, 0); // Wait until the thread signals that it has completed the execution while(atomic_load_explicit(&tcb->thread_finished, memory_order_acquire) != 1) { syscall(SYS_futex, &tcb->thread_finished, FUTEX_WAIT, 0, NULL, 0, 0); } // Set the exit code *out_exit_code = atomic_load_explicit(&tcb->exit_code, memory_order_acquire); return _RT_STATUS_OK; } static _RT_Status _rt_thread_detach(_RT_Thread *thread) { _LD_Thread_Block *tcb = thread->handle; atomic_store_explicit(&tcb->thread_behaviour, _LD_THREAD_BEHAVIOUR_DETACH, memory_order_relaxed); return _RT_STATUS_OK; } static _RT_Status _rt_thread_yield() { i64 status = syscall(SYS_sched_yield); if(status != 0) { // shouldn't happen on linux return _RT_ERROR_GENERIC; } return _RT_STATUS_OK; } static _RT_Status _rt_thread_terminate(_RT_Thread *thread) { return _RT_ERROR_NOT_IMPLEMENTED; } static _RT_Status _rt_thread_sleep(u64 time) { return _RT_ERROR_NOT_IMPLEMENTED; } static _RT_Status _rt_thread_get_timer_freq(u64 *freq) { return _RT_ERROR_NOT_IMPLEMENTED; }