131 lines
6.9 KiB
C++
131 lines
6.9 KiB
C++
|
#include <math.h> // smallpt, a Path Tracer by Kevin Beason, 2009
|
||
|
#include <stdlib.h> // Make : g++ -O3 -fopenmp explicit.cpp -o explicit
|
||
|
#include <stdio.h> // Remove "-fopenmp" for g++ version < 4.2
|
||
|
#include <time.h>
|
||
|
double get_time() {
|
||
|
struct timespec ts; clock_gettime(CLOCK_REALTIME, &ts);
|
||
|
return ts.tv_sec * 1000.0 + ts.tv_nsec / 1000000.0;
|
||
|
}
|
||
|
struct Vec { // Usage: time ./explicit 16 && xv image.ppm
|
||
|
double x, y, z; // position, also color (r,g,b)
|
||
|
Vec(double x_=0, double y_=0, double z_=0){ x=x_; y=y_; z=z_; }
|
||
|
Vec operator+(const Vec &b) const { return Vec(x+b.x,y+b.y,z+b.z); }
|
||
|
Vec operator-(const Vec &b) const { return Vec(x-b.x,y-b.y,z-b.z); }
|
||
|
Vec operator*(double b) const { return Vec(x*b,y*b,z*b); }
|
||
|
Vec mult(const Vec &b) const { return Vec(x*b.x,y*b.y,z*b.z); }
|
||
|
Vec& norm(){ return *this = *this * (1/sqrt(x*x+y*y+z*z)); }
|
||
|
double dot(const Vec &b) const { return x*b.x+y*b.y+z*b.z; } // cross:
|
||
|
Vec operator%(Vec&b){return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}
|
||
|
};
|
||
|
struct Ray { Vec o, d; Ray(Vec o_, Vec d_) : o(o_), d(d_) {} };
|
||
|
enum Refl_t { DIFF, SPEC, REFR }; // material types, used in radiance()
|
||
|
struct Sphere {
|
||
|
double rad; // radius
|
||
|
Vec p, e, c; // position, emission, color
|
||
|
Refl_t refl; // reflection type (DIFFuse, SPECular, REFRactive)
|
||
|
Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_):
|
||
|
rad(rad_), p(p_), e(e_), c(c_), refl(refl_) {}
|
||
|
double intersect(const Ray &r) const { // returns distance, 0 if nohit
|
||
|
Vec op = p-r.o; // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
|
||
|
double t, eps=1e-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad;
|
||
|
if (det<0) return 0; else det=sqrt(det);
|
||
|
return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 0);
|
||
|
}
|
||
|
};
|
||
|
Sphere spheres[] = {//Scene: radius, position, emission, color, material
|
||
|
Sphere(1e5, Vec( 1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left
|
||
|
Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rght
|
||
|
Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75),DIFF),//Back
|
||
|
Sphere(1e5, Vec(50,40.8,-1e5+170), Vec(),Vec(), DIFF),//Frnt
|
||
|
Sphere(1e5, Vec(50, 1e5, 81.6), Vec(),Vec(.75,.75,.75),DIFF),//Botm
|
||
|
Sphere(1e5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF),//Top
|
||
|
Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(1,1,1)*.6, SPEC),//Mirr
|
||
|
Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(.75,1.,.95), REFR),//Glas
|
||
|
Sphere(4.0, Vec(50,81.6-16.5,81.6),Vec(4,4,4)*12, Vec(), DIFF),//Lite
|
||
|
};
|
||
|
int numSpheres = sizeof(spheres)/sizeof(Sphere);
|
||
|
inline double clamp(double x){ return x<0 ? 0 : x>1 ? 1 : x; }
|
||
|
inline int toInt(double x){ return int(pow(clamp(x),1/2.2)*255+.5); }
|
||
|
inline bool intersect(const Ray &r, double &t, int &id){
|
||
|
double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20;
|
||
|
for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;}
|
||
|
return t<inf;
|
||
|
}
|
||
|
Vec radiance(const Ray &r, int depth, unsigned short *Xi,int E=1){
|
||
|
double t; // distance to intersection
|
||
|
int id=0; // id of intersected object
|
||
|
if (!intersect(r, t, id)) return Vec(); // if miss, return black
|
||
|
const Sphere &obj = spheres[id]; // the hit object
|
||
|
Vec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n.dot(r.d)<0?n:n*-1, f=obj.c;
|
||
|
double p = f.x>f.y && f.x>f.z ? f.x : f.y>f.z ? f.y : f.z; // max refl
|
||
|
if (++depth>5||!p) if (erand48(Xi)<p) f=f*(1/p); else return obj.e*E;
|
||
|
if (obj.refl == DIFF){ // Ideal DIFFUSE reflection
|
||
|
double r1=2*M_PI*erand48(Xi), r2=erand48(Xi), r2s=sqrt(r2);
|
||
|
Vec w=nl, u=((fabs(w.x)>.1?Vec(0,1):Vec(1))%w).norm(), v=w%u;
|
||
|
Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1-r2)).norm();
|
||
|
|
||
|
// Loop over any lights
|
||
|
Vec e;
|
||
|
for (int i=0; i<numSpheres; i++){
|
||
|
const Sphere &s = spheres[i];
|
||
|
if (s.e.x<=0 && s.e.y<=0 && s.e.z<=0) continue; // skip non-lights
|
||
|
|
||
|
Vec sw=s.p-x, su=((fabs(sw.x)>.1?Vec(0,1):Vec(1))%sw).norm(), sv=sw%su;
|
||
|
double cos_a_max = sqrt(1-s.rad*s.rad/(x-s.p).dot(x-s.p));
|
||
|
double eps1 = erand48(Xi), eps2 = erand48(Xi);
|
||
|
double cos_a = 1-eps1+eps1*cos_a_max;
|
||
|
double sin_a = sqrt(1-cos_a*cos_a);
|
||
|
double phi = 2*M_PI*eps2;
|
||
|
Vec l = su*cos(phi)*sin_a + sv*sin(phi)*sin_a + sw*cos_a;
|
||
|
l.norm();
|
||
|
if (intersect(Ray(x,l), t, id) && id==i){ // shadow ray
|
||
|
double omega = 2*M_PI*(1-cos_a_max);
|
||
|
e = e + f.mult(s.e*l.dot(nl)*omega)*M_1_PI; // 1/pi for brdf
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return obj.e*E+e+f.mult(radiance(Ray(x,d),depth,Xi,0));
|
||
|
} else if (obj.refl == SPEC) // Ideal SPECULAR reflection
|
||
|
return obj.e + f.mult(radiance(Ray(x,r.d-n*2*n.dot(r.d)),depth,Xi));
|
||
|
Ray reflRay(x, r.d-n*2*n.dot(r.d)); // Ideal dielectric REFRACTION
|
||
|
bool into = n.dot(nl)>0; // Ray from outside going in?
|
||
|
double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=r.d.dot(nl), cos2t;
|
||
|
if ((cos2t=1-nnt*nnt*(1-ddn*ddn))<0) // Total internal reflection
|
||
|
return obj.e + f.mult(radiance(reflRay,depth,Xi));
|
||
|
Vec tdir = (r.d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
|
||
|
double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n));
|
||
|
double Re=R0+(1-R0)*c*c*c*c*c,Tr=1-Re,P=.25+.5*Re,RP=Re/P,TP=Tr/(1-P);
|
||
|
return obj.e + f.mult(depth>2 ? (erand48(Xi)<P ? // Russian roulette
|
||
|
radiance(reflRay,depth,Xi)*RP:radiance(Ray(x,tdir),depth,Xi)*TP) :
|
||
|
radiance(reflRay,depth,Xi)*Re+radiance(Ray(x,tdir),depth,Xi)*Tr);
|
||
|
}
|
||
|
int main(int argc, char *argv[]){
|
||
|
int w=1024, h=768, samps = 2;
|
||
|
if (argc >= 2) samps = atoi(argv[1])/4;
|
||
|
if (argc >= 3) w = h = atoi(argv[2]);
|
||
|
double tbeg = get_time();
|
||
|
Ray cam(Vec(50,52,295.6), Vec(0,-0.042612,-1).norm()); // cam pos, dir
|
||
|
Vec cx=Vec(w*.5135/h), cy=(cx%cam.d).norm()*.5135, r, *c=new Vec[w*h];
|
||
|
#pragma omp parallel for schedule(dynamic, 1) private(r) // OpenMP
|
||
|
for (int y=0; y<h; y++){ // Loop over image rows
|
||
|
fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samps*4,100.*y/(h-1));
|
||
|
for (unsigned short x=0, Xi[3]={0,0,(unsigned short)(y*y*y)}; x<w; x++) // Loop cols
|
||
|
for (int sy=0, i=(h-y-1)*w+x; sy<2; sy++) // 2x2 subpixel rows
|
||
|
for (int sx=0; sx<2; sx++, r=Vec()){ // 2x2 subpixel cols
|
||
|
for (int s=0; s<samps; s++){
|
||
|
double r1=2*erand48(Xi), dx=r1<1 ? sqrt(r1)-1: 1-sqrt(2-r1);
|
||
|
double r2=2*erand48(Xi), dy=r2<1 ? sqrt(r2)-1: 1-sqrt(2-r2);
|
||
|
Vec d = cx*( ( (sx+.5 + dx)/2 + x)/w - .5) +
|
||
|
cy*( ( (sy+.5 + dy)/2 + y)/h - .5) + cam.d;
|
||
|
r = r + radiance(Ray(cam.o+d*140,d.norm()),0,Xi)*(1./samps);
|
||
|
} // Camera rays are pushed ^^^^^ forward to start in interior
|
||
|
c[i] = c[i] + Vec(clamp(r.x),clamp(r.y),clamp(r.z))*.25;
|
||
|
}
|
||
|
}
|
||
|
double tend = get_time();
|
||
|
fprintf(stderr, "\nElapsed: %5.1f ms\n", tend - tbeg);
|
||
|
fprintf(stdout, "P3\n%d %d\n%d\n", w, h, 255);
|
||
|
for (int i=0; i<w*h; i++)
|
||
|
fprintf(stdout,"%d %d %d ", toInt(c[i].x), toInt(c[i].y), toInt(c[i].z));
|
||
|
}
|