[mtl canvas] remove old metal canvas stuff

This commit is contained in:
Martin Fouilleul 2023-04-11 11:19:29 +02:00
parent 03b5802529
commit b7f5b84123
3 changed files with 0 additions and 1324 deletions

View File

@ -1,667 +0,0 @@
/************************************************************//**
*
* @file: mtl_canvas.m
* @author: Martin Fouilleul
* @date: 12/07/2020
* @revision: 24/01/2023
*
*****************************************************************/
#import<Metal/Metal.h>
#import<QuartzCore/CAMetalLayer.h>
#include<simd/simd.h>
#include"graphics_internal.h"
#include"macro_helpers.h"
#include"osx_app.h"
#include"mtl_shader.h"
#define LOG_SUBSYSTEM "Graphics"
static const int MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH = 4<<20;
static const int MG_MTL_MAX_BUFFER_AVAILABLE = 3;
typedef struct mg_mtl_canvas_backend
{
mg_canvas_backend interface;
mg_surface surface;
u32 vertexBufferOffset;
u32 indexBufferOffset;
u32 shapeBufferOffset;
mg_color clearColor;
// permanent metal resources
id<MTLComputePipelineState> shapePipeline;
id<MTLComputePipelineState> trianglePipeline;
id<MTLComputePipelineState> gatherPipeline;
id<MTLComputePipelineState> computePipeline;
id<MTLRenderPipelineState> renderPipeline;
mp_rect viewPort;
// triple buffering
u32 bufferIndex;
dispatch_semaphore_t bufferSemaphore;
// textures and buffers
id<MTLTexture> backbuffer;
id<MTLTexture> outTexture;
id<MTLBuffer> shapeBuffer[MG_MTL_MAX_BUFFER_AVAILABLE];
id<MTLBuffer> vertexBuffer[MG_MTL_MAX_BUFFER_AVAILABLE];
id<MTLBuffer> indexBuffer[MG_MTL_MAX_BUFFER_AVAILABLE];
id<MTLBuffer> shapeQueueBuffer;
id<MTLBuffer> triangleArray;
id<MTLBuffer> tilesBuffer;
id<MTLBuffer> tilesOffset;
id<MTLBuffer> eltBuffer;
id<MTLBuffer> eltOffset;
id<MTLBuffer> tileArrayBuffer;
id<MTLBuffer> tileCounters;
} mg_mtl_canvas_backend;
typedef struct mg_mtl_image_data
{
mg_image_data interface;
id<MTLTexture> texture;
} mg_mtl_image_data;
mg_mtl_surface* mg_mtl_canvas_get_surface(mg_mtl_canvas_backend* canvas)
{
mg_mtl_surface* res = 0;
mg_surface_data* data = mg_surface_data_from_handle(canvas->surface);
if(data && data->backend == MG_BACKEND_METAL)
{
res = (mg_mtl_surface*)data;
}
return(res);
}
void mg_mtl_canvas_update_vertex_layout(mg_mtl_canvas_backend* backend)
{
char* vertexBase = (char*)[backend->vertexBuffer[backend->bufferIndex] contents] + backend->vertexBufferOffset;
char* shapeBase = (char*)[backend->shapeBuffer[backend->bufferIndex] contents] + backend->shapeBufferOffset;
char* indexBase = (char*)[backend->indexBuffer[backend->bufferIndex] contents] + backend->indexBufferOffset;
//TODO: add maxShapeCount
backend->interface.vertexLayout = (mg_vertex_layout){
.maxVertexCount = MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH - backend->vertexBufferOffset/sizeof(mg_vertex),
.maxIndexCount = MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH - backend->indexBufferOffset/sizeof(int),
.cubicBuffer = vertexBase + offsetof(mg_vertex, cubic),
.cubicStride = sizeof(mg_vertex),
.posBuffer = vertexBase + offsetof(mg_vertex, pos),
.posStride = sizeof(mg_vertex),
.shapeIndexBuffer = vertexBase + offsetof(mg_vertex, shapeIndex),
.shapeIndexStride = sizeof(mg_vertex),
.colorBuffer = shapeBase + offsetof(mg_shape, color),
.colorStride = sizeof(mg_shape),
.texturedBuffer = shapeBase + offsetof(mg_shape, textured),
.texturedStride = sizeof(mg_shape),
.clipBuffer = shapeBase + offsetof(mg_shape, clip),
.clipStride = sizeof(mg_shape),
.uvTransformBuffer = shapeBase + offsetof(mg_shape, uvTransform),
.uvTransformStride = sizeof(mg_shape),
.indexBuffer = indexBase,
.indexStride = sizeof(int)};
}
void mg_mtl_canvas_begin(mg_canvas_backend* interface, mg_color clearColor)
{
mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface;
mg_mtl_surface* surface = mg_mtl_canvas_get_surface(backend);
if(!surface)
{
return;
}
backend->clearColor = clearColor;
backend->vertexBufferOffset = 0;
backend->indexBufferOffset = 0;
backend->shapeBufferOffset = 0;
mg_mtl_canvas_update_vertex_layout(backend);
mg_mtl_surface_acquire_command_buffer(surface);
@autoreleasepool
{
MTLClearColor mtlClearColor = MTLClearColorMake(clearColor.r,
clearColor.g,
clearColor.b,
clearColor.a);
MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor];
renderPassDescriptor.colorAttachments[0].texture = backend->backbuffer;
renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear;
renderPassDescriptor.colorAttachments[0].clearColor = mtlClearColor;
renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
id<MTLRenderCommandEncoder> renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor];
renderEncoder.label = @"clear pass";
[renderEncoder endEncoding];
}
}
void mg_mtl_canvas_end(mg_canvas_backend* interface)
{
mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface;
mg_mtl_surface* surface = mg_mtl_canvas_get_surface(backend);
if(surface && surface->commandBuffer)
{
@autoreleasepool
{
mg_mtl_surface_acquire_drawable(surface);
if(surface->drawable != nil)
{
f32 scale = surface->mtlLayer.contentsScale;
MTLViewport viewport = {backend->viewPort.x * scale,
backend->viewPort.y * scale,
backend->viewPort.w * scale,
backend->viewPort.h * scale,
0,
1};
MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor];
renderPassDescriptor.colorAttachments[0].texture = surface->drawable.texture;
renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionLoad;
renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
id<MTLRenderCommandEncoder> renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor];
renderEncoder.label = @"blit pass";
[renderEncoder setViewport: viewport];
[renderEncoder setRenderPipelineState: backend->renderPipeline];
[renderEncoder setFragmentTexture: backend->backbuffer atIndex: 0];
[renderEncoder drawPrimitives: MTLPrimitiveTypeTriangle
vertexStart: 0
vertexCount: 3 ];
[renderEncoder endEncoding];
}
[surface->commandBuffer addCompletedHandler:^(id<MTLCommandBuffer> commandBuffer)
{
dispatch_semaphore_signal(backend->bufferSemaphore);
}
];
dispatch_semaphore_wait(backend->bufferSemaphore, DISPATCH_TIME_FOREVER);
backend->bufferIndex = (backend->bufferIndex + 1) % MG_MTL_MAX_BUFFER_AVAILABLE;
}
}
}
void mg_mtl_canvas_draw_batch(mg_canvas_backend* interface, mg_image_data* image, u32 shapeCount, u32 vertexCount, u32 indexCount)
{
mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface;
mg_mtl_surface* surface = mg_mtl_canvas_get_surface(backend);
if(!surface || (backend->backbuffer == nil))
{
return;
}
//TODO: guard against overflowing buffers...
@autoreleasepool
{
f32 scale = surface->mtlLayer.contentsScale;
vector_uint2 viewportSize = {backend->viewPort.w * scale, backend->viewPort.h * scale};
u32 nTilesX = (viewportSize.x + RENDERER_TILE_SIZE - 1)/RENDERER_TILE_SIZE;
u32 nTilesY = (viewportSize.y + RENDERER_TILE_SIZE - 1)/RENDERER_TILE_SIZE;
int triangleCount = indexCount/3;
printf("triangle count: %i, shape count: %i\n", triangleCount, shapeCount);
//-----------------------------------------------------------
//NOTE(martin): encode the clear arena offset
//-----------------------------------------------------------
id<MTLBlitCommandEncoder> blitEncoder = [surface->commandBuffer blitCommandEncoder];
blitEncoder.label = @"clear arena";
[blitEncoder fillBuffer: backend->tilesOffset range: NSMakeRange(0, sizeof(int)) value: 0];
[blitEncoder fillBuffer: backend->eltOffset range: NSMakeRange(0, sizeof(int)) value: 0];
[blitEncoder fillBuffer: backend->tileCounters range: NSMakeRange(0, RENDERER_MAX_TILES*sizeof(uint)) value: 0];
[blitEncoder endEncoding];
//-----------------------------------------------------------
//NOTE(martin): encode the shape setup pass
//-----------------------------------------------------------
id<MTLComputeCommandEncoder> shapeEncoder = [surface->commandBuffer computeCommandEncoder];
shapeEncoder.label = @"shape pass";
[shapeEncoder setComputePipelineState: backend->shapePipeline];
[shapeEncoder setBuffer: backend->shapeBuffer[backend->bufferIndex] offset:backend->shapeBufferOffset atIndex: 0];
[shapeEncoder setBuffer: backend->shapeQueueBuffer offset:0 atIndex: 1];
[shapeEncoder setBuffer: backend->tilesBuffer offset:0 atIndex: 2];
[shapeEncoder setBuffer: backend->tilesOffset offset:0 atIndex: 3];
[shapeEncoder setBytes: &scale length: sizeof(float) atIndex: 4];
[shapeEncoder setBytes: &viewportSize length: sizeof(vector_uint2) atIndex: 5];
MTLSize shapeGroupSize = MTLSizeMake(backend->shapePipeline.maxTotalThreadsPerThreadgroup, 1, 1);
MTLSize shapeGridSize = MTLSizeMake(shapeCount, 1, 1);
[shapeEncoder dispatchThreads: shapeGridSize threadsPerThreadgroup: shapeGroupSize];
[shapeEncoder endEncoding];
//-----------------------------------------------------------
//NOTE(martin): encode the triangle setup and binning
//-----------------------------------------------------------
id<MTLComputeCommandEncoder> triangleEncoder = [surface->commandBuffer computeCommandEncoder];
triangleEncoder.label = @"triangle pass";
[triangleEncoder setComputePipelineState: backend->trianglePipeline];
[triangleEncoder setBuffer: backend->vertexBuffer[backend->bufferIndex] offset:backend->vertexBufferOffset atIndex: 0];
[triangleEncoder setBuffer: backend->indexBuffer[backend->bufferIndex] offset:backend->indexBufferOffset atIndex: 1];
[triangleEncoder setBuffer: backend->shapeBuffer[backend->bufferIndex] offset:backend->shapeBufferOffset atIndex: 2];
[triangleEncoder setBuffer: backend->triangleArray offset:0 atIndex: 3];
[triangleEncoder setBuffer: backend->shapeQueueBuffer offset:0 atIndex: 4];
[triangleEncoder setBuffer: backend->tilesBuffer offset:0 atIndex: 5];
[triangleEncoder setBuffer: backend->eltBuffer offset:0 atIndex: 6];
[triangleEncoder setBuffer: backend->eltOffset offset:0 atIndex: 7];
[triangleEncoder setBytes: &scale length: sizeof(float) atIndex: 8];
MTLSize triangleGroupSize = MTLSizeMake(backend->trianglePipeline.maxTotalThreadsPerThreadgroup, 1, 1);
MTLSize triangleGridSize = MTLSizeMake(triangleCount, 1, 1);
[triangleEncoder dispatchThreads: triangleGridSize threadsPerThreadgroup: triangleGroupSize];
[triangleEncoder endEncoding];
//-----------------------------------------------------------
//NOTE(martin): encode gathering pass
//-----------------------------------------------------------
id<MTLComputeCommandEncoder> gatherEncoder = [surface->commandBuffer computeCommandEncoder];
gatherEncoder.label = @"gather pass";
[gatherEncoder setComputePipelineState: backend->gatherPipeline];
[gatherEncoder setBuffer: backend->shapeQueueBuffer offset:0 atIndex: 0];
[gatherEncoder setBuffer: backend->tilesBuffer offset:0 atIndex: 1];
[gatherEncoder setBuffer: backend->eltBuffer offset:0 atIndex: 2];
[gatherEncoder setBuffer: backend->tileCounters offset:0 atIndex: 3];
[gatherEncoder setBuffer: backend->tileArrayBuffer offset:0 atIndex: 4];
[gatherEncoder setBytes: &shapeCount length: sizeof(int) atIndex: 5];
[gatherEncoder setBytes: &viewportSize length: sizeof(vector_uint2) atIndex: 6];
MTLSize gatherGroupSize = MTLSizeMake(16, 16, 1);
MTLSize gatherGridSize = MTLSizeMake(nTilesX, nTilesY, 1);
[gatherEncoder dispatchThreads: gatherGridSize threadsPerThreadgroup: gatherGroupSize];
[gatherEncoder endEncoding];
//-----------------------------------------------------------
//NOTE(martin): encode drawing pass
//-----------------------------------------------------------
id<MTLComputeCommandEncoder> drawEncoder = [surface->commandBuffer computeCommandEncoder];
drawEncoder.label = @"drawing pass";
[drawEncoder setComputePipelineState:backend->computePipeline];
[drawEncoder setBuffer: backend->tileCounters offset:0 atIndex: 0];
[drawEncoder setBuffer: backend->tileArrayBuffer offset:0 atIndex: 1];
[drawEncoder setBuffer: backend->triangleArray offset:0 atIndex: 2];
[drawEncoder setTexture: backend->outTexture atIndex: 0];
int useTexture = 0;
if(image)
{
mg_mtl_image_data* mtlImage = (mg_mtl_image_data*)image;
[drawEncoder setTexture: mtlImage->texture atIndex: 1];
useTexture = 1;
}
[drawEncoder setBytes: &useTexture length:sizeof(int) atIndex: 3];
[drawEncoder setBytes: &scale length: sizeof(float) atIndex: 4];
//TODO: check that we don't exceed maxTotalThreadsPerThreadgroup
DEBUG_ASSERT(RENDERER_TILE_SIZE*RENDERER_TILE_SIZE <= backend->computePipeline.maxTotalThreadsPerThreadgroup);
MTLSize threadGridSize = MTLSizeMake(viewportSize.x, viewportSize.y, 1);
MTLSize threadGroupSize = MTLSizeMake(RENDERER_TILE_SIZE, RENDERER_TILE_SIZE, 1);
[drawEncoder dispatchThreads: threadGridSize threadsPerThreadgroup:threadGroupSize];
[drawEncoder endEncoding];
//-----------------------------------------------------------
//NOTE(martin): blit texture to backbuffer
//-----------------------------------------------------------
MTLViewport viewport = {backend->viewPort.x * scale,
backend->viewPort.y * scale,
backend->viewPort.w * scale,
backend->viewPort.h * scale,
0,
1};
MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor];
renderPassDescriptor.colorAttachments[0].texture = backend->backbuffer;
renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionLoad;
renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
id<MTLRenderCommandEncoder> renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor];
renderEncoder.label = @"blit pass";
[renderEncoder setViewport: viewport];
[renderEncoder setRenderPipelineState: backend->renderPipeline];
[renderEncoder setFragmentTexture: backend->outTexture atIndex: 0];
[renderEncoder drawPrimitives: MTLPrimitiveTypeTriangle
vertexStart: 0
vertexCount: 3 ];
[renderEncoder endEncoding];
}
backend->vertexBufferOffset += vertexCount * sizeof(mg_vertex);
backend->indexBufferOffset += indexCount * sizeof(int);
backend->shapeBufferOffset += shapeCount * sizeof(mg_shape);
mg_mtl_canvas_update_vertex_layout(backend);
}
/*
void mg_mtl_canvas_viewport(mg_canvas_backend* interface, mp_rect viewPort)
{
mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface;
mg_mtl_surface* surface = mg_mtl_canvas_get_surface(backend);
if(!surface)
{
return;
}
backend->viewPort = viewPort;
@autoreleasepool
{
f32 scale = surface->mtlLayer.contentsScale;
CGSize drawableSize = (CGSize){.width = viewPort.w * scale, .height = viewPort.h * scale};
[backend->outTexture release];
MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init];
texDesc.textureType = MTLTextureType2D;
texDesc.storageMode = MTLStorageModePrivate;
texDesc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite;
texDesc.pixelFormat = MTLPixelFormatBGRA8Unorm;// MTLPixelFormatBGRA8Unorm_sRGB;
texDesc.width = drawableSize.width;
texDesc.height = drawableSize.height;
backend->outTexture = [surface->device newTextureWithDescriptor:texDesc];
}
}
*/
void mg_mtl_canvas_destroy(mg_canvas_backend* interface)
{
mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface;
@autoreleasepool
{
[backend->outTexture release];
for(int i=0; i < MG_MTL_MAX_BUFFER_AVAILABLE; i++)
{
[backend->vertexBuffer[i] release];
[backend->indexBuffer[i] release];
[backend->shapeBuffer[i] release];
}
//NOTE: semaphore does not have a destructor?
[backend->shapeQueueBuffer release];
[backend->triangleArray release];
[backend->tilesBuffer release];
[backend->tilesOffset release];
[backend->eltBuffer release];
[backend->eltOffset release];
//////////////////////////////////////////
//TODO release all pipelines
[backend->computePipeline release];
}
}
mg_image_data* mg_mtl_canvas_image_create(mg_canvas_backend* interface, vec2 size)
{
mg_mtl_image_data* image = 0;
mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface;
mg_mtl_surface* surface = mg_mtl_canvas_get_surface(backend);
if(surface)
{
@autoreleasepool{
image = malloc_type(mg_mtl_image_data);
if(image)
{
MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init];
texDesc.textureType = MTLTextureType2D;
texDesc.storageMode = MTLStorageModeManaged;
texDesc.usage = MTLTextureUsageShaderRead;
texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm;
texDesc.width = size.x;
texDesc.height = size.y;
image->texture = [surface->device newTextureWithDescriptor:texDesc];
if(image->texture != nil)
{
[image->texture retain];
image->interface.size = size;
}
else
{
free(image);
image = 0;
}
}
}
}
return((mg_image_data*)image);
}
void mg_mtl_canvas_image_destroy(mg_canvas_backend* backendInterface, mg_image_data* imageInterface)
{
mg_mtl_image_data* image = (mg_mtl_image_data*)imageInterface;
@autoreleasepool
{
[image->texture release];
free(image);
}
}
void mg_mtl_canvas_image_upload_region(mg_canvas_backend* backendInterface, mg_image_data* imageInterface, mp_rect region, u8* pixels)
{@autoreleasepool{
mg_mtl_image_data* image = (mg_mtl_image_data*)imageInterface;
MTLRegion mtlRegion = MTLRegionMake2D(region.x, region.y, region.w, region.h);
[image->texture replaceRegion:mtlRegion
mipmapLevel:0
withBytes:(void*)pixels
bytesPerRow: 4 * region.w];
}}
mg_canvas_backend* mg_mtl_canvas_create(mg_surface surface)
{
mg_mtl_canvas_backend* backend = 0;
mg_surface_data* surfaceData = mg_surface_data_from_handle(surface);
if(surfaceData && surfaceData->backend == MG_BACKEND_METAL)
{
mg_mtl_surface* metalSurface = (mg_mtl_surface*)surfaceData;
backend = malloc_type(mg_mtl_canvas_backend);
memset(backend, 0, sizeof(mg_mtl_canvas_backend));
backend->surface = surface;
//NOTE(martin): setup interface functions
backend->interface.destroy = mg_mtl_canvas_destroy;
backend->interface.begin = mg_mtl_canvas_begin;
backend->interface.end = mg_mtl_canvas_end;
backend->interface.drawBatch = mg_mtl_canvas_draw_batch;
backend->interface.imageCreate = mg_mtl_canvas_image_create;
backend->interface.imageDestroy = mg_mtl_canvas_image_destroy;
backend->interface.imageUploadRegion = mg_mtl_canvas_image_upload_region;
mp_rect frame = mg_surface_get_frame(surface);
backend->viewPort = (mp_rect){0, 0, frame.w, frame.h};
@autoreleasepool
{
f32 scale = metalSurface->mtlLayer.contentsScale;
CGSize drawableSize = (CGSize){.width = backend->viewPort.w * scale, .height = backend->viewPort.h * scale};
//-----------------------------------------------------------
//NOTE(martin): create our output texture
//-----------------------------------------------------------
MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init];
texDesc.textureType = MTLTextureType2D;
texDesc.storageMode = MTLStorageModePrivate;
texDesc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite;
texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm;
texDesc.width = drawableSize.width;
texDesc.height = drawableSize.height;
backend->outTexture = [metalSurface->device newTextureWithDescriptor:texDesc];
texDesc.usage = MTLTextureUsageRenderTarget | MTLTextureUsageShaderRead;
backend->backbuffer = [metalSurface->device newTextureWithDescriptor:texDesc];
//TODO(martin): retain ?
//-----------------------------------------------------------
//NOTE(martin): create buffers
//-----------------------------------------------------------
backend->bufferSemaphore = dispatch_semaphore_create(MG_MTL_MAX_BUFFER_AVAILABLE);
backend->bufferIndex = 0;
MTLResourceOptions bufferOptions = MTLResourceCPUCacheModeWriteCombined
| MTLResourceStorageModeShared;
for(int i=0; i<MG_MTL_MAX_BUFFER_AVAILABLE; i++)
{
backend->indexBuffer[i] = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(int)
options: bufferOptions];
backend->vertexBuffer[i] = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(mg_vertex)
options: bufferOptions];
backend->shapeBuffer[i] = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(mg_shape)
options: bufferOptions];
}
backend->triangleArray = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(mg_triangle_data)
options: MTLResourceStorageModePrivate];
backend->shapeQueueBuffer = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(mg_shape_queue)
options: MTLResourceStorageModePrivate];
backend->tilesBuffer = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(mg_tile)
options: MTLResourceStorageModePrivate];
backend->tilesOffset = [metalSurface->device newBufferWithLength: sizeof(int)
options: MTLResourceStorageModePrivate];
backend->eltBuffer = [metalSurface->device newBufferWithLength: MG_MTL_CANVAS_DEFAULT_BUFFER_LENGTH*sizeof(mg_tile_elt)
options: MTLResourceStorageModePrivate];
backend->eltOffset = [metalSurface->device newBufferWithLength: sizeof(int)
options: MTLResourceStorageModePrivate];
backend->tileArrayBuffer = [metalSurface->device newBufferWithLength: RENDERER_TILE_BUFFER_COUNT*sizeof(mg_tile_cmd)*RENDERER_MAX_TILES
options: MTLResourceStorageModePrivate];
backend->tileCounters = [metalSurface->device newBufferWithLength: RENDERER_MAX_TILES*sizeof(uint)
options: MTLResourceStorageModePrivate];
//-----------------------------------------------------------
//NOTE(martin): load the library
//-----------------------------------------------------------
//TODO(martin): filepath magic to find metallib path when not in the working directory
str8 shaderPath = mp_app_get_resource_path(mem_scratch(), "../resources/mtl_shader.metallib");
NSString* metalFileName = [[NSString alloc] initWithBytes: shaderPath.ptr length:shaderPath.len encoding: NSUTF8StringEncoding];
NSError* err = 0;
id<MTLLibrary> library = [metalSurface->device newLibraryWithFile: metalFileName error:&err];
if(err != nil)
{
const char* errStr = [[err localizedDescription] UTF8String];
LOG_ERROR("error : %s\n", errStr);
return(0);
}
id<MTLFunction> shapeFunction = [library newFunctionWithName:@"ShapeSetup"];
id<MTLFunction> triangleFunction = [library newFunctionWithName:@"TriangleKernel"];
id<MTLFunction> gatherFunction = [library newFunctionWithName:@"GatherKernel"];
id<MTLFunction> computeFunction = [library newFunctionWithName:@"RenderKernel"];
id<MTLFunction> vertexFunction = [library newFunctionWithName:@"VertexShader"];
id<MTLFunction> fragmentFunction = [library newFunctionWithName:@"FragmentShader"];
//-----------------------------------------------------------
//NOTE(martin): setup our data layout and pipeline state
//-----------------------------------------------------------
NSError* error = NULL;
backend->computePipeline = [metalSurface->device newComputePipelineStateWithFunction: computeFunction
error:&error];
ASSERT(backend->computePipeline);
MTLComputePipelineDescriptor* shapePipelineDesc = [[MTLComputePipelineDescriptor alloc] init];
shapePipelineDesc.computeFunction = shapeFunction;
backend->shapePipeline = [metalSurface->device newComputePipelineStateWithDescriptor: shapePipelineDesc
options: MTLPipelineOptionNone
reflection: nil
error: &error];
MTLComputePipelineDescriptor* trianglePipelineDesc = [[MTLComputePipelineDescriptor alloc] init];
trianglePipelineDesc.computeFunction = triangleFunction;
backend->trianglePipeline = [metalSurface->device newComputePipelineStateWithDescriptor: trianglePipelineDesc
options: MTLPipelineOptionNone
reflection: nil
error: &error];
MTLComputePipelineDescriptor* gatherPipelineDesc = [[MTLComputePipelineDescriptor alloc] init];
gatherPipelineDesc.computeFunction = gatherFunction;
backend->gatherPipeline = [metalSurface->device newComputePipelineStateWithDescriptor: gatherPipelineDesc
options: MTLPipelineOptionNone
reflection: nil
error: &error];
//-----------------------------------------------------------
//NOTE(martin): setup our render pipeline state
//-----------------------------------------------------------
// create and initialize the pipeline state descriptor
MTLRenderPipelineDescriptor *pipelineStateDescriptor = [[MTLRenderPipelineDescriptor alloc] init];
pipelineStateDescriptor.label = @"My simple pipeline";
pipelineStateDescriptor.vertexFunction = vertexFunction;
pipelineStateDescriptor.fragmentFunction = fragmentFunction;
pipelineStateDescriptor.colorAttachments[0].pixelFormat = metalSurface->mtlLayer.pixelFormat;
pipelineStateDescriptor.colorAttachments[0].blendingEnabled = YES;
pipelineStateDescriptor.colorAttachments[0].rgbBlendOperation = MTLBlendOperationAdd;
pipelineStateDescriptor.colorAttachments[0].sourceRGBBlendFactor = MTLBlendFactorOne;
pipelineStateDescriptor.colorAttachments[0].destinationRGBBlendFactor = MTLBlendFactorOneMinusSourceAlpha;
pipelineStateDescriptor.colorAttachments[0].alphaBlendOperation = MTLBlendOperationAdd;
pipelineStateDescriptor.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorOne;
pipelineStateDescriptor.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorOneMinusSourceAlpha;
// create render pipeline
backend->renderPipeline = [metalSurface->device newRenderPipelineStateWithDescriptor: pipelineStateDescriptor error:&err];
if(err != nil)
{
const char* errStr = [[err localizedDescription] UTF8String];
const char* descStr = [[err localizedFailureReason] UTF8String];
const char* recovStr = [[err localizedRecoverySuggestion] UTF8String];
LOG_ERROR("(%li) %s. %s. %s\n", [err code], errStr, descStr, recovStr);
return(0);
}
}
mg_mtl_canvas_update_vertex_layout(backend);
}
return((mg_canvas_backend*)backend);
}
#undef LOG_SUBSYSTEM

View File

@ -1,107 +0,0 @@
/************************************************************//**
*
* @file: mtl_shader.h
* @author: Martin Fouilleul
* @date: 01/08/2022
* @revision:
*
*****************************************************************/
#ifndef __MTL_RENDERER_H_
#define __MTL_RENDERER_H_
#include<simd/simd.h>
#define RENDERER_TILE_SIZE 16
#define RENDERER_MAX_TILES 65536
#define RENDERER_TILE_BUFFER_COUNT 8*(1<<10)
#define RENDERER_DEBUG_TILE_VISITED 0xf00d
#define RENDERER_DEBUG_TILE_BUFFER_OVERFLOW 0xdead
typedef struct mg_vertex
{
vector_float4 cubic; // canonical implicit curve space coordinates
vector_float2 pos; // position
int shapeIndex;
} mg_vertex;
typedef struct mg_shape
{
vector_float4 color;
vector_float4 clip;
float uvTransform[6];
bool textured;
} mg_shape;
typedef struct mg_triangle_data
{
matrix_float3x3 uvTransform;
vector_float4 color;
bool full;
vector_float4 cubic0;
vector_float4 cubic1;
vector_float4 cubic2;
vector_int4 box;
vector_int2 p0;
vector_int2 p1;
vector_int2 p2;
int bias0;
int bias1;
int bias2;
int cw;
int shapeIndex;
} mg_triangle_data;
#ifndef __METAL_VERSION__
#define device
#else
using namespace metal;
#endif
#define MG_TILE_CMD_MASK (3<<30)
typedef enum mg_tile_cmd_kind
{
mg_cmd_triangle = 0,
mg_cmd_color = 1<<30,
mg_cmd_flip = 2<<30
} mg_tile_cmd_kind;
typedef int mg_tile_cmd;
typedef struct mg_tile_elt
{
int triangleIndex;
int next;
} mg_tile_elt;
typedef struct mg_tile
{
vector_float4 color;
atomic_int firstElt;
atomic_int eltCount;
atomic_int partial;
atomic_int flipCount;
bool textured;
} mg_tile;
typedef struct mg_shape_queue
{
vector_int4 area;
int tiles;
} mg_shape_queue;
#ifndef __METAL_VERSION__
#undef device
#endif
#endif //__MTL_RENDERER_H_

View File

@ -1,550 +0,0 @@
#include<metal_stdlib>
#include<simd/simd.h>
#include<metal_simdgroup>
#include"mtl_shader.h"
using namespace metal;
struct vs_out
{
float4 pos [[position]];
float2 uv;
};
vertex vs_out VertexShader(ushort vid [[vertex_id]])
{
vs_out out;
out.uv = float2((vid << 1) & 2, vid & 2);
out.pos = float4(out.uv * float2(2, -2) + float2(-1, 1), 0, 1);
return(out);
}
fragment float4 FragmentShader(vs_out i [[stage_in]], texture2d<float> tex [[texture(0)]])
{
constexpr sampler smp(mip_filter::nearest, mag_filter::linear, min_filter::linear);
return(tex.sample(smp, i.uv));
}
bool is_top_left(float2 a, float2 b)
{
return( (a.y == b.y && b.x < a.x)
||(b.y < a.y));
}
//////////////////////////////////////////////////////////////////////////////
//TODO: we should do these computations on 64bits, because otherwise
// we might overflow for values > 2048.
// Unfortunately this is costly.
// Another way is to precompute triangle edges (b - a) in full precision
// once to avoid doing it all the time...
//////////////////////////////////////////////////////////////////////////////
int orient2d(int2 a, int2 b, int2 c)
{
return((b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x));
}
device uchar* arena_allocate(device uchar* arenaBuffer,
device volatile atomic_uint* arenaOffset,
uint size)
{
uint index = atomic_fetch_add_explicit(arenaOffset, size, memory_order_relaxed);
return(&arenaBuffer[index]);
}
//NOTE: shape setup allocates tile queues for each shape
kernel void ShapeSetup(constant mg_shape* shapeBuffer [[buffer(0)]],
device mg_shape_queue* shapeQueueBuffer [[buffer(1)]],
device mg_tile* tilesBuffer [[buffer(2)]],
device volatile atomic_uint* tilesOffset [[buffer(3)]],
constant float* scaling [[buffer(4)]],
constant int2* viewport [[buffer(5)]],
uint gid [[thread_position_in_grid]])
{
int2 tilesMatrixDim = (*viewport - 1) / RENDERER_TILE_SIZE + 1;
float4 box = shapeBuffer[gid].clip * scaling[0];
int2 firstTile = int2(box.xy)/RENDERER_TILE_SIZE;
//WARN: the following can result in a 1x1 tile allocated even for empty boxes. But if we didn't allocate
// any tile queue, the tileQueues pointer for that shape would alias the tileQueues pointer of another
// shape, and we would have to detect that in the tiling and drawing kernels. Instead, just accept some
// waste and keep the other kernels more uniforms for now...
//TODO limit to screen
int2 lastTile = max(firstTile, min(int2(box.zw)/RENDERER_TILE_SIZE, tilesMatrixDim));
int nTilesX = lastTile.x - firstTile.x + 1;
int nTilesY = lastTile.y - firstTile.y + 1;
int tileCount = nTilesX * nTilesY;
int tilesIndex = atomic_fetch_add_explicit(tilesOffset, tileCount, memory_order_relaxed);
shapeQueueBuffer[gid].area = int4(firstTile.x, firstTile.y, nTilesX, nTilesY);
shapeQueueBuffer[gid].tiles = tilesIndex;
device mg_tile* tiles = &tilesBuffer[tilesIndex];
for(int i=0; i<tileCount; i++)
{
tiles[i].color = shapeBuffer[gid].color;
tiles[i].textured = shapeBuffer[gid].textured;
atomic_store_explicit(&tiles[i].firstElt, -1, memory_order_relaxed);
atomic_store_explicit(&tiles[i].eltCount, 0, memory_order_relaxed);
atomic_store_explicit(&tiles[i].partial, 0, memory_order_relaxed);
atomic_store_explicit(&tiles[i].flipCount, 0, memory_order_relaxed);
}
}
//NOTE: setup triangle data and bucket triangle into tile queues
kernel void TriangleKernel(constant mg_vertex* vertexBuffer [[buffer(0)]],
constant uint* indexBuffer [[buffer(1)]],
constant mg_shape* shapeBuffer [[buffer(2)]],
device mg_triangle_data* triangleArray [[buffer(3)]],
device mg_shape_queue* shapeQueueBuffer [[buffer(4)]],
device mg_tile* tilesBuffer [[buffer(5)]],
device mg_tile_elt* eltBuffer [[buffer(6)]],
device volatile atomic_uint* eltOffset [[buffer(7)]],
constant float* scaling [[buffer(8)]],
uint gid [[thread_position_in_grid]])
{
//NOTE: triangle setup
uint triangleIndex = gid * 3;
uint i0 = indexBuffer[triangleIndex];
uint i1 = indexBuffer[triangleIndex+1];
uint i2 = indexBuffer[triangleIndex+2];
float2 p0 = vertexBuffer[i0].pos * scaling[0];
float2 p1 = vertexBuffer[i1].pos * scaling[0];
float2 p2 = vertexBuffer[i2].pos * scaling[0];
int shapeIndex = vertexBuffer[i0].shapeIndex;
//NOTE(martin): compute triangle bounding box and clip it
float4 clip = shapeBuffer[shapeIndex].clip * scaling[0];
float4 fbox = float4(min(min(p0, p1), p2), max(max(p0, p1), p2));
fbox = float4(max(fbox.xy, clip.xy), min(fbox.zw, clip.zw));
//NOTE(martin): fill triangle data
const float subPixelFactor = 16;
triangleArray[gid].box = int4(fbox * subPixelFactor);
triangleArray[gid].shapeIndex = shapeIndex;
triangleArray[gid].color = shapeBuffer[shapeIndex].color;
constant float* uvTransform2x3 = shapeBuffer[shapeIndex].uvTransform;
triangleArray[gid].uvTransform = (matrix_float3x3){{uvTransform2x3[0], uvTransform2x3[3], 0},
{uvTransform2x3[1], uvTransform2x3[4], 0},
{uvTransform2x3[2], uvTransform2x3[5], 1}};
triangleArray[gid].cubic0 = vertexBuffer[i0].cubic;
triangleArray[gid].cubic1 = vertexBuffer[i1].cubic;
triangleArray[gid].cubic2 = vertexBuffer[i2].cubic;
int2 ip0 = int2(p0 * subPixelFactor);
int2 ip1 = int2(p1 * subPixelFactor);
int2 ip2 = int2(p2 * subPixelFactor);
triangleArray[gid].p0 = ip0;
triangleArray[gid].p1 = ip1;
triangleArray[gid].p2 = ip2;
int cw = orient2d(ip0, ip1, ip2) > 0 ? 1 : -1;
triangleArray[gid].cw = cw;
triangleArray[gid].bias0 = is_top_left(p1, p2) ? -(1-cw)/2 : -(1+cw)/2;
triangleArray[gid].bias1 = is_top_left(p2, p0) ? -(1-cw)/2 : -(1+cw)/2;
triangleArray[gid].bias2 = is_top_left(p0, p1) ? -(1-cw)/2 : -(1+cw)/2;
bool triangleFull = all( triangleArray[gid].cubic0 == float4(1, 1, 1, 1)
&& triangleArray[gid].cubic1 == float4(1, 1, 1, 1)
&& triangleArray[gid].cubic2 == float4(1, 1, 1, 1));
triangleArray[gid].full = triangleFull;
int4 coarseBox = int4(fbox)/RENDERER_TILE_SIZE;
//NOTE: bucket triangle into tiles
device mg_shape_queue* shapeQueue = &shapeQueueBuffer[shapeIndex];
device mg_tile* tiles = &tilesBuffer[shapeQueue->tiles];
int xMin = max(0, coarseBox.x - shapeQueue->area.x);
int yMin = max(0, coarseBox.y - shapeQueue->area.y);
int xMax = min(coarseBox.z - shapeQueue->area.x, shapeQueue->area.z-1);
int yMax = min(coarseBox.w - shapeQueue->area.y, shapeQueue->area.w-1);
//NOTE(martin): it's important to do the computation with signed int, so that we can have negative xMax/yMax
// otherwise all triangles on the left or below the x/y axis are attributed to tiles on row/column 0.
int2 edges[3][2] = {{ip0, ip1}, {ip1, ip2}, {ip2, ip0}};
for(int y = yMin; y <= yMax; y++)
{
for(int x = xMin ; x <= xMax; x++)
{
int4 tileBox = int4(shapeQueue->area.x + x,
shapeQueue->area.y + y,
shapeQueue->area.x + x + 1,
shapeQueue->area.y + y + 1) * RENDERER_TILE_SIZE*int(subPixelFactor);
int2 b[4] = {{tileBox.x, tileBox.y},
{tileBox.z, tileBox.y},
{tileBox.z, tileBox.w},
{tileBox.x, tileBox.w}};
//TODO: should add the biases here?
int sideFromEdge[3][4];
for(int edgeIndex=0; edgeIndex<3; edgeIndex++)
{
for(int cornerIndex=0; cornerIndex<4; cornerIndex++)
{
sideFromEdge[edgeIndex][cornerIndex] = cw*orient2d(edges[edgeIndex][0],
edges[edgeIndex][1],
b[cornerIndex]);
}
}
bool allRightFromEdge0 = sideFromEdge[0][0] < 0
&& sideFromEdge[0][1] < 0
&& sideFromEdge[0][2] < 0
&& sideFromEdge[0][3] < 0;
bool allRightFromEdge1 = sideFromEdge[1][0] < 0
&& sideFromEdge[1][1] < 0
&& sideFromEdge[1][2] < 0
&& sideFromEdge[1][3] < 0;
bool allRightFromEdge2 = sideFromEdge[2][0] < 0
&& sideFromEdge[2][1] < 0
&& sideFromEdge[2][2] < 0
&& sideFromEdge[2][3] < 0;
bool allOutside = allRightFromEdge0 || allRightFromEdge1 || allRightFromEdge2;
if(!allOutside)
{
int tileIndex = y*shapeQueue->area.z + x;
device mg_tile* tile = &tiles[tileIndex];
int eltIndex = atomic_fetch_add_explicit(eltOffset, 1, memory_order_relaxed);
device mg_tile_elt* elt = &eltBuffer[eltIndex];
elt->triangleIndex = gid;
elt->next = atomic_exchange_explicit(&tile->firstElt, eltIndex, memory_order_relaxed);
atomic_fetch_add_explicit(&tile->eltCount, 1, memory_order_relaxed);
bool allLeftFromEdge0 = sideFromEdge[0][0] > 0
&& sideFromEdge[0][1] > 0
&& sideFromEdge[0][2] > 0
&& sideFromEdge[0][3] > 0;
bool allLeftFromEdge1 = sideFromEdge[1][0] > 0
&& sideFromEdge[1][1] > 0
&& sideFromEdge[1][2] > 0
&& sideFromEdge[1][3] > 0;
bool allLeftFromEdge2 = sideFromEdge[2][0] > 0
&& sideFromEdge[2][1] > 0
&& sideFromEdge[2][2] > 0
&& sideFromEdge[2][3] > 0;
if(allLeftFromEdge0 && allLeftFromEdge1 && allLeftFromEdge2 && triangleFull)
{
elt->triangleIndex |= mg_cmd_flip;
atomic_fetch_add_explicit(&tile->flipCount, 1, memory_order_relaxed);
}
else
{
atomic_store_explicit(&tile->partial, 1, memory_order_relaxed);
}
}
}
}
}
kernel void GatherKernel(const device mg_shape_queue* shapeQueueBuffer [[buffer(0)]],
const device mg_tile* tilesBuffer [[buffer(1)]],
const device mg_tile_elt* eltBuffer [[buffer(2)]],
device int* tileCounters [[buffer(3)]],
device mg_tile_cmd* tileArrayBuffer [[buffer(4)]],
constant int* shapeCount [[buffer(5)]],
constant uint2* viewport [[buffer(6)]],
uint2 gid [[thread_position_in_grid]])
{
uint2 tilesMatrixDim = (*viewport - 1) / RENDERER_TILE_SIZE + 1;
int nTilesX = tilesMatrixDim.x;
int2 tileCoord = int2(gid);
int tileIndex = tileCoord.y * nTilesX + tileCoord.x;
device mg_tile_cmd* tileArray = &tileArrayBuffer[tileIndex * RENDERER_TILE_BUFFER_COUNT];
int count = 0;
for(int shapeIndex = 0; shapeIndex < shapeCount[0]; shapeIndex++)
{
const device mg_shape_queue* shapeQueue = &shapeQueueBuffer[shapeIndex];
const device mg_tile* tiles = &tilesBuffer[shapeQueue->tiles];
// get the tile queue that corresponds to our tile in the shape area
int2 tileQueueCoord = tileCoord - shapeQueue->area.xy;
if( tileQueueCoord.x >= 0
&& tileQueueCoord.y >= 0
&& tileQueueCoord.x < shapeQueue->area.z
&& tileQueueCoord.y < shapeQueue->area.w)
{
int localIndex = tileQueueCoord.y * shapeQueue->area.z + tileQueueCoord.x;
const device mg_tile* tile = &tiles[localIndex];
if(atomic_load_explicit(&tile->partial, memory_order_relaxed) == 0)
{
if(atomic_load_explicit(&tile->flipCount, memory_order_relaxed) & 0x01)
{
if(tile->color.a == 1 && !tile->textured)
{
//NOTE: tile is full covered by a solid color, reset counter and push a color command
int firstEltIndex = *(device int*)&tile->firstElt;
const device mg_tile_elt* elt = &eltBuffer[firstEltIndex];
count = 0;
tileArray[count] = mg_cmd_color | (elt->triangleIndex & ~MG_TILE_CMD_MASK);
count++;
continue;
}
}
else
{
//NOTE: tile is fully uncovered, skip that shape
continue;
}
}
int firstEltIndex = *(device int*)&tile->firstElt;
const device mg_tile_elt* elt = 0;
for(int eltIndex = firstEltIndex; eltIndex >= 0; eltIndex = elt->next)
{
elt = &eltBuffer[eltIndex];
eltIndex = elt->next;
tileArray[count] = elt->triangleIndex;
count++;
}
}
}
tileCounters[tileIndex] = count;
}
kernel void RenderKernel(const device uint* tileCounters [[buffer(0)]],
const device mg_tile_cmd* tileArrayBuffer [[buffer(1)]],
const device mg_triangle_data* triangleArray [[buffer(2)]],
constant int* useTexture [[buffer(3)]],
constant float* scaling [[buffer(4)]],
texture2d<float, access::write> outTexture [[texture(0)]],
texture2d<float> texAtlas [[texture(1)]],
uint2 gid [[thread_position_in_grid]],
uint2 tgid [[threadgroup_position_in_grid]],
uint2 threadsPerThreadgroup [[threads_per_threadgroup]],
uint2 gridSize [[threads_per_grid]])
{
//TODO: guard against thread group size not equal to tile size?
const int2 pixelCoord = int2(gid);
const uint2 tileCoord = uint2(pixelCoord)/ RENDERER_TILE_SIZE;
const uint2 tilesMatrixDim = (gridSize - 1) / RENDERER_TILE_SIZE + 1;
const uint tileIndex = tileCoord.y * tilesMatrixDim.x + tileCoord.x;
const uint tileCounter = min(tileCounters[tileIndex], (uint)RENDERER_TILE_BUFFER_COUNT);
#ifdef RENDERER_DEBUG_TILES
//NOTE(martin): color code debug values and show the tile grid
{
float4 fragColor = float4(0);
if( pixelCoord.x % 16 == 0
||pixelCoord.y % 16 == 0)
{
fragColor = float4(0, 0, 0, 1);
}
else if(tileCounters[tileIndex] == 0xffffu)
{
fragColor = float4(1, 0, 1, 1);
}
else if(tileCounter != 0u)
{
fragColor = float4(0, 1, 0, 1);
}
else
{
fragColor = float4(1, 0, 0, 1);
}
outTexture.write(fragColor, gid);
return;
}
#endif
const int subPixelFactor = 16;
const int2 centerPoint = int2((float2(pixelCoord) + float2(0.5, 0.5)) * subPixelFactor);
const int sampleCount = 8;
int2 samplePoints[sampleCount] = {centerPoint + int2(1, 3),
centerPoint + int2(-1, -3),
centerPoint + int2(5, -1),
centerPoint + int2(-3, 5),
centerPoint + int2(-5, -5),
centerPoint + int2(-7, 1),
centerPoint + int2(3, -7),
centerPoint + int2(7, 7)};
float4 sampleColor[sampleCount];
float4 currentColor[sampleCount];
int flipCount[sampleCount];
for(int i=0; i<sampleCount; i++)
{
flipCount[i] = 0;
sampleColor[i] = float4(0, 0, 0, 0);
currentColor[i] = float4(0, 0, 0, 0);
}
int currentShapeIndex = -1;
if(tileCounter >= RENDERER_TILE_BUFFER_COUNT)
{
outTexture.write(float4(1, 0, 0, 1), gid);
return;
}
for(uint tileArrayIndex=0; tileArrayIndex < tileCounter; tileArrayIndex++)
{
mg_tile_cmd cmd = tileArrayBuffer[RENDERER_TILE_BUFFER_COUNT * tileIndex + tileArrayIndex];
int cmdKind = cmd & MG_TILE_CMD_MASK;
int triangleIndex = cmd & ~(MG_TILE_CMD_MASK);
const device mg_triangle_data* triangle = &triangleArray[triangleIndex];
if(currentShapeIndex != triangle->shapeIndex)
{
for(int sampleIndex = 0; sampleIndex<sampleCount; sampleIndex++)
{
if(flipCount[sampleIndex] & 0x01)
{
sampleColor[sampleIndex] = currentColor[sampleIndex];
}
float4 nextColor = triangle->color;
nextColor.rgb *= nextColor.a;
if(useTexture[0])
{
int2 samplePoint = samplePoints[sampleIndex];
float3 sampleFP = float3(float2(samplePoint).xy/(subPixelFactor*2.), 1);
float2 uv = (triangle->uvTransform * sampleFP).xy;
constexpr sampler smp(mip_filter::nearest, mag_filter::linear, min_filter::linear);
float4 texColor = texAtlas.sample(smp, uv);
texColor.rgb *= texColor.a;
nextColor *= texColor;
}
currentColor[sampleIndex] = sampleColor[sampleIndex]*(1.-nextColor.a) + nextColor;
flipCount[sampleIndex] = 0;
}
currentShapeIndex = triangle->shapeIndex;
}
switch(cmdKind)
{
case mg_cmd_color:
{
for(int sampleIndex=0; sampleIndex<sampleCount; sampleIndex++)
{
float4 nextColor = triangle->color;
nextColor.rgb *= nextColor.a;
sampleColor[sampleIndex] = nextColor;
flipCount[sampleIndex] = 0;
}
} break;
case mg_cmd_flip:
{
for(int sampleIndex=0; sampleIndex<sampleCount; sampleIndex++)
{
flipCount[sampleIndex]++;
}
} break;
case mg_cmd_triangle:
{
int2 p0 = triangle->p0;
int2 p1 = triangle->p1;
int2 p2 = triangle->p2;
int cw = triangle->cw;
int bias0 = triangle->bias0;
int bias1 = triangle->bias1;
int bias2 = triangle->bias2;
float4 cubic0 = triangle->cubic0;
float4 cubic1 = triangle->cubic1;
float4 cubic2 = triangle->cubic2;
bool fullTriangle = triangle->full;
int4 clip = triangle->box;
for(int sampleIndex = 0; sampleIndex < sampleCount; sampleIndex++)
{
int2 samplePoint = samplePoints[sampleIndex];
if( samplePoint.x < clip.x
|| samplePoint.x > clip.z
|| samplePoint.y < clip.y
|| samplePoint.y > clip.w)
{
continue;
}
int w0 = cw*orient2d(p1, p2, samplePoint);
int w1 = cw*orient2d(p2, p0, samplePoint);
int w2 = cw*orient2d(p0, p1, samplePoint);
if((w0+bias0) >= 0 && (w1+bias1) >= 0 && (w2+bias2) >= 0)
{
float4 cubic = (cubic0*w0 + cubic1*w1 + cubic2*w2)/(w0+w1+w2);
if( fullTriangle
||(cubic.w*(cubic.x*cubic.x*cubic.x - cubic.y*cubic.z) <= 0))
{
flipCount[sampleIndex]++;
}
}
}
} break;
}
}
float4 pixelColor = float4(0);
for(int sampleIndex = 0; sampleIndex < sampleCount; sampleIndex++)
{
if(flipCount[sampleIndex] & 0x01)
{
sampleColor[sampleIndex] = currentColor[sampleIndex];
}
pixelColor += sampleColor[sampleIndex];
}
outTexture.write(pixelColor/float(sampleCount), gid);
}