Add paddle angle fun time party
This commit is contained in:
parent
f6e89e6168
commit
d139619147
|
@ -54,6 +54,9 @@ double acos(double);
|
||||||
|
|
||||||
double ceil(double);
|
double ceil(double);
|
||||||
|
|
||||||
|
double cos(double);
|
||||||
|
float cosf(float);
|
||||||
|
|
||||||
double fabs(double);
|
double fabs(double);
|
||||||
|
|
||||||
double floor(double);
|
double floor(double);
|
||||||
|
@ -62,7 +65,27 @@ double fmod(double, double);
|
||||||
|
|
||||||
double pow(double, double);
|
double pow(double, double);
|
||||||
|
|
||||||
|
double scalbn(double, int);
|
||||||
|
|
||||||
|
double sin(double);
|
||||||
|
float sinf(float);
|
||||||
|
|
||||||
double sqrt(double);
|
double sqrt(double);
|
||||||
|
float sqrtf(float);
|
||||||
|
|
||||||
|
#define M_E 2.7182818284590452354 /* e */
|
||||||
|
#define M_LOG2E 1.4426950408889634074 /* log_2 e */
|
||||||
|
#define M_LOG10E 0.43429448190325182765 /* log_10 e */
|
||||||
|
#define M_LN2 0.69314718055994530942 /* log_e 2 */
|
||||||
|
#define M_LN10 2.30258509299404568402 /* log_e 10 */
|
||||||
|
#define M_PI 3.14159265358979323846 /* pi */
|
||||||
|
#define M_PI_2 1.57079632679489661923 /* pi/2 */
|
||||||
|
#define M_PI_4 0.78539816339744830962 /* pi/4 */
|
||||||
|
#define M_1_PI 0.31830988618379067154 /* 1/pi */
|
||||||
|
#define M_2_PI 0.63661977236758134308 /* 2/pi */
|
||||||
|
#define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
|
||||||
|
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
|
||||||
|
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,71 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* __cos( x, y )
|
||||||
|
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||||
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||||
|
* Input y is the tail of x.
|
||||||
|
*
|
||||||
|
* Algorithm
|
||||||
|
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||||
|
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
||||||
|
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||||
|
* [0,pi/4]
|
||||||
|
* 4 14
|
||||||
|
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||||
|
* where the remez error is
|
||||||
|
*
|
||||||
|
* | 2 4 6 8 10 12 14 | -58
|
||||||
|
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||||
|
* | |
|
||||||
|
*
|
||||||
|
* 4 6 8 10 12 14
|
||||||
|
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||||
|
* cos(x) ~ 1 - x*x/2 + r
|
||||||
|
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||||
|
* ~ cos(x) - x*y,
|
||||||
|
* a correction term is necessary in cos(x) and hence
|
||||||
|
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||||
|
* For better accuracy, rearrange to
|
||||||
|
* cos(x+y) ~ w + (tmp + (r-x*y))
|
||||||
|
* where w = 1 - x*x/2 and tmp is a tiny correction term
|
||||||
|
* (1 - x*x/2 == w + tmp exactly in infinite precision).
|
||||||
|
* The exactness of w + tmp in infinite precision depends on w
|
||||||
|
* and tmp having the same precision as x. If they have extra
|
||||||
|
* precision due to compiler bugs, then the extra precision is
|
||||||
|
* only good provided it is retained in all terms of the final
|
||||||
|
* expression for cos(). Retention happens in all cases tested
|
||||||
|
* under FreeBSD, so don't pessimize things by forcibly clipping
|
||||||
|
* any extra precision in w.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
static const double
|
||||||
|
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
||||||
|
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
||||||
|
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
||||||
|
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
||||||
|
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||||
|
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||||
|
|
||||||
|
double __cos(double x, double y)
|
||||||
|
{
|
||||||
|
double_t hz,z,r,w;
|
||||||
|
|
||||||
|
z = x*x;
|
||||||
|
w = z*z;
|
||||||
|
r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
|
||||||
|
hz = 0.5*z;
|
||||||
|
w = 1.0-hz;
|
||||||
|
return w + (((1.0-w)-hz) + (z*r-x*y));
|
||||||
|
}
|
|
@ -0,0 +1,35 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
|
||||||
|
/*
|
||||||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||||
|
* Debugged and optimized by Bruce D. Evans.
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
|
||||||
|
static const double
|
||||||
|
C0 = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
|
||||||
|
C1 = 0x155553e1053a42.0p-57, /* 0.0416666233237390631894 */
|
||||||
|
C2 = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
|
||||||
|
C3 = 0x199342e0ee5069.0p-68; /* 0.0000243904487962774090654 */
|
||||||
|
|
||||||
|
float __cosdf(double x)
|
||||||
|
{
|
||||||
|
double_t r, w, z;
|
||||||
|
|
||||||
|
/* Try to optimize for parallel evaluation as in __tandf.c. */
|
||||||
|
z = x*x;
|
||||||
|
w = z*z;
|
||||||
|
r = C2+z*C3;
|
||||||
|
return ((1.0+z*C0) + w*C1) + (w*z)*r;
|
||||||
|
}
|
|
@ -0,0 +1,6 @@
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
float __math_invalidf(float x)
|
||||||
|
{
|
||||||
|
return (x - x) / (x - x);
|
||||||
|
}
|
|
@ -0,0 +1,190 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c */
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*
|
||||||
|
* Optimized by Bruce D. Evans.
|
||||||
|
*/
|
||||||
|
/* __rem_pio2(x,y)
|
||||||
|
*
|
||||||
|
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||||
|
* use __rem_pio2_large() for large x
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
|
||||||
|
#define EPS DBL_EPSILON
|
||||||
|
#elif FLT_EVAL_METHOD==2
|
||||||
|
#define EPS LDBL_EPSILON
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* invpio2: 53 bits of 2/pi
|
||||||
|
* pio2_1: first 33 bit of pi/2
|
||||||
|
* pio2_1t: pi/2 - pio2_1
|
||||||
|
* pio2_2: second 33 bit of pi/2
|
||||||
|
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||||
|
* pio2_3: third 33 bit of pi/2
|
||||||
|
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||||
|
*/
|
||||||
|
static const double
|
||||||
|
toint = 1.5/EPS,
|
||||||
|
pio4 = 0x1.921fb54442d18p-1,
|
||||||
|
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||||
|
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
||||||
|
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
||||||
|
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
||||||
|
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
||||||
|
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
||||||
|
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||||
|
|
||||||
|
/* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
|
||||||
|
int __rem_pio2(double x, double *y)
|
||||||
|
{
|
||||||
|
union {double f; uint64_t i;} u = {x};
|
||||||
|
double_t z,w,t,r,fn;
|
||||||
|
double tx[3],ty[2];
|
||||||
|
uint32_t ix;
|
||||||
|
int sign, n, ex, ey, i;
|
||||||
|
|
||||||
|
sign = u.i>>63;
|
||||||
|
ix = u.i>>32 & 0x7fffffff;
|
||||||
|
if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
|
||||||
|
if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
|
||||||
|
goto medium; /* cancellation -- use medium case */
|
||||||
|
if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
|
||||||
|
if (!sign) {
|
||||||
|
z = x - pio2_1; /* one round good to 85 bits */
|
||||||
|
y[0] = z - pio2_1t;
|
||||||
|
y[1] = (z-y[0]) - pio2_1t;
|
||||||
|
return 1;
|
||||||
|
} else {
|
||||||
|
z = x + pio2_1;
|
||||||
|
y[0] = z + pio2_1t;
|
||||||
|
y[1] = (z-y[0]) + pio2_1t;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (!sign) {
|
||||||
|
z = x - 2*pio2_1;
|
||||||
|
y[0] = z - 2*pio2_1t;
|
||||||
|
y[1] = (z-y[0]) - 2*pio2_1t;
|
||||||
|
return 2;
|
||||||
|
} else {
|
||||||
|
z = x + 2*pio2_1;
|
||||||
|
y[0] = z + 2*pio2_1t;
|
||||||
|
y[1] = (z-y[0]) + 2*pio2_1t;
|
||||||
|
return -2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
|
||||||
|
if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
|
||||||
|
if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
|
||||||
|
goto medium;
|
||||||
|
if (!sign) {
|
||||||
|
z = x - 3*pio2_1;
|
||||||
|
y[0] = z - 3*pio2_1t;
|
||||||
|
y[1] = (z-y[0]) - 3*pio2_1t;
|
||||||
|
return 3;
|
||||||
|
} else {
|
||||||
|
z = x + 3*pio2_1;
|
||||||
|
y[0] = z + 3*pio2_1t;
|
||||||
|
y[1] = (z-y[0]) + 3*pio2_1t;
|
||||||
|
return -3;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
|
||||||
|
goto medium;
|
||||||
|
if (!sign) {
|
||||||
|
z = x - 4*pio2_1;
|
||||||
|
y[0] = z - 4*pio2_1t;
|
||||||
|
y[1] = (z-y[0]) - 4*pio2_1t;
|
||||||
|
return 4;
|
||||||
|
} else {
|
||||||
|
z = x + 4*pio2_1;
|
||||||
|
y[0] = z + 4*pio2_1t;
|
||||||
|
y[1] = (z-y[0]) + 4*pio2_1t;
|
||||||
|
return -4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
|
||||||
|
medium:
|
||||||
|
/* rint(x/(pi/2)) */
|
||||||
|
fn = (double_t)x*invpio2 + toint - toint;
|
||||||
|
n = (int32_t)fn;
|
||||||
|
r = x - fn*pio2_1;
|
||||||
|
w = fn*pio2_1t; /* 1st round, good to 85 bits */
|
||||||
|
/* Matters with directed rounding. */
|
||||||
|
if (predict_false(r - w < -pio4)) {
|
||||||
|
n--;
|
||||||
|
fn--;
|
||||||
|
r = x - fn*pio2_1;
|
||||||
|
w = fn*pio2_1t;
|
||||||
|
} else if (predict_false(r - w > pio4)) {
|
||||||
|
n++;
|
||||||
|
fn++;
|
||||||
|
r = x - fn*pio2_1;
|
||||||
|
w = fn*pio2_1t;
|
||||||
|
}
|
||||||
|
y[0] = r - w;
|
||||||
|
u.f = y[0];
|
||||||
|
ey = u.i>>52 & 0x7ff;
|
||||||
|
ex = ix>>20;
|
||||||
|
if (ex - ey > 16) { /* 2nd round, good to 118 bits */
|
||||||
|
t = r;
|
||||||
|
w = fn*pio2_2;
|
||||||
|
r = t - w;
|
||||||
|
w = fn*pio2_2t - ((t-r)-w);
|
||||||
|
y[0] = r - w;
|
||||||
|
u.f = y[0];
|
||||||
|
ey = u.i>>52 & 0x7ff;
|
||||||
|
if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
|
||||||
|
t = r;
|
||||||
|
w = fn*pio2_3;
|
||||||
|
r = t - w;
|
||||||
|
w = fn*pio2_3t - ((t-r)-w);
|
||||||
|
y[0] = r - w;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
y[1] = (r - y[0]) - w;
|
||||||
|
return n;
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
* all other (large) arguments
|
||||||
|
*/
|
||||||
|
if (ix >= 0x7ff00000) { /* x is inf or NaN */
|
||||||
|
y[0] = y[1] = x - x;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
/* set z = scalbn(|x|,-ilogb(x)+23) */
|
||||||
|
u.f = x;
|
||||||
|
u.i &= (uint64_t)-1>>12;
|
||||||
|
u.i |= (uint64_t)(0x3ff + 23)<<52;
|
||||||
|
z = u.f;
|
||||||
|
for (i=0; i < 2; i++) {
|
||||||
|
tx[i] = (double)(int32_t)z;
|
||||||
|
z = (z-tx[i])*0x1p24;
|
||||||
|
}
|
||||||
|
tx[i] = z;
|
||||||
|
/* skip zero terms, first term is non-zero */
|
||||||
|
while (tx[i] == 0.0)
|
||||||
|
i--;
|
||||||
|
n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1);
|
||||||
|
if (sign) {
|
||||||
|
y[0] = -ty[0];
|
||||||
|
y[1] = -ty[1];
|
||||||
|
return -n;
|
||||||
|
}
|
||||||
|
y[0] = ty[0];
|
||||||
|
y[1] = ty[1];
|
||||||
|
return n;
|
||||||
|
}
|
|
@ -0,0 +1,442 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* __rem_pio2_large(x,y,e0,nx,prec)
|
||||||
|
* double x[],y[]; int e0,nx,prec;
|
||||||
|
*
|
||||||
|
* __rem_pio2_large return the last three digits of N with
|
||||||
|
* y = x - N*pi/2
|
||||||
|
* so that |y| < pi/2.
|
||||||
|
*
|
||||||
|
* The method is to compute the integer (mod 8) and fraction parts of
|
||||||
|
* (2/pi)*x without doing the full multiplication. In general we
|
||||||
|
* skip the part of the product that are known to be a huge integer (
|
||||||
|
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||||
|
* independent of the exponent of the input.
|
||||||
|
*
|
||||||
|
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||||
|
*
|
||||||
|
* Input parameters:
|
||||||
|
* x[] The input value (must be positive) is broken into nx
|
||||||
|
* pieces of 24-bit integers in double precision format.
|
||||||
|
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||||
|
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||||
|
* match x's up to 24 bits.
|
||||||
|
*
|
||||||
|
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||||
|
* e0 = ilogb(z)-23
|
||||||
|
* z = scalbn(z,-e0)
|
||||||
|
* for i = 0,1,2
|
||||||
|
* x[i] = floor(z)
|
||||||
|
* z = (z-x[i])*2**24
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* y[] ouput result in an array of double precision numbers.
|
||||||
|
* The dimension of y[] is:
|
||||||
|
* 24-bit precision 1
|
||||||
|
* 53-bit precision 2
|
||||||
|
* 64-bit precision 2
|
||||||
|
* 113-bit precision 3
|
||||||
|
* The actual value is the sum of them. Thus for 113-bit
|
||||||
|
* precison, one may have to do something like:
|
||||||
|
*
|
||||||
|
* long double t,w,r_head, r_tail;
|
||||||
|
* t = (long double)y[2] + (long double)y[1];
|
||||||
|
* w = (long double)y[0];
|
||||||
|
* r_head = t+w;
|
||||||
|
* r_tail = w - (r_head - t);
|
||||||
|
*
|
||||||
|
* e0 The exponent of x[0]. Must be <= 16360 or you need to
|
||||||
|
* expand the ipio2 table.
|
||||||
|
*
|
||||||
|
* nx dimension of x[]
|
||||||
|
*
|
||||||
|
* prec an integer indicating the precision:
|
||||||
|
* 0 24 bits (single)
|
||||||
|
* 1 53 bits (double)
|
||||||
|
* 2 64 bits (extended)
|
||||||
|
* 3 113 bits (quad)
|
||||||
|
*
|
||||||
|
* External function:
|
||||||
|
* double scalbn(), floor();
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* Here is the description of some local variables:
|
||||||
|
*
|
||||||
|
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||||
|
* in the computation. The minimum and recommended value
|
||||||
|
* for jk is 3,4,4,6 for single, double, extended, and quad.
|
||||||
|
* jk+1 must be 2 larger than you might expect so that our
|
||||||
|
* recomputation test works. (Up to 24 bits in the integer
|
||||||
|
* part (the 24 bits of it that we compute) and 23 bits in
|
||||||
|
* the fraction part may be lost to cancelation before we
|
||||||
|
* recompute.)
|
||||||
|
*
|
||||||
|
* jz local integer variable indicating the number of
|
||||||
|
* terms of ipio2[] used.
|
||||||
|
*
|
||||||
|
* jx nx - 1
|
||||||
|
*
|
||||||
|
* jv index for pointing to the suitable ipio2[] for the
|
||||||
|
* computation. In general, we want
|
||||||
|
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||||
|
* is an integer. Thus
|
||||||
|
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||||
|
* Hence jv = max(0,(e0-3)/24).
|
||||||
|
*
|
||||||
|
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||||
|
*
|
||||||
|
* q[] double array with integral value, representing the
|
||||||
|
* 24-bits chunk of the product of x and 2/pi.
|
||||||
|
*
|
||||||
|
* q0 the corresponding exponent of q[0]. Note that the
|
||||||
|
* exponent for q[i] would be q0-24*i.
|
||||||
|
*
|
||||||
|
* PIo2[] double precision array, obtained by cutting pi/2
|
||||||
|
* into 24 bits chunks.
|
||||||
|
*
|
||||||
|
* f[] ipio2[] in floating point
|
||||||
|
*
|
||||||
|
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||||
|
*
|
||||||
|
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||||
|
*
|
||||||
|
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||||
|
* it also indicates the *sign* of the result.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* Constants:
|
||||||
|
* The hexadecimal values are the intended ones for the following
|
||||||
|
* constants. The decimal values may be used, provided that the
|
||||||
|
* compiler will convert from decimal to binary accurately enough
|
||||||
|
* to produce the hexadecimal values shown.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||||
|
*
|
||||||
|
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||||
|
* bit of 2/pi after binary point. The corresponding
|
||||||
|
* floating value is
|
||||||
|
*
|
||||||
|
* ipio2[i] * 2^(-24(i+1)).
|
||||||
|
*
|
||||||
|
* NB: This table must have at least (e0-3)/24 + jk terms.
|
||||||
|
* For quad precision (e0 <= 16360, jk = 6), this is 686.
|
||||||
|
*/
|
||||||
|
static const int32_t ipio2[] = {
|
||||||
|
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||||
|
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||||
|
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||||
|
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||||
|
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||||
|
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||||
|
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||||
|
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||||
|
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||||
|
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||||
|
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||||
|
|
||||||
|
#if LDBL_MAX_EXP > 1024
|
||||||
|
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
|
||||||
|
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
|
||||||
|
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
|
||||||
|
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
|
||||||
|
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
|
||||||
|
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
|
||||||
|
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
|
||||||
|
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
|
||||||
|
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
|
||||||
|
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
|
||||||
|
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
|
||||||
|
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
|
||||||
|
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
|
||||||
|
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
|
||||||
|
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
|
||||||
|
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
|
||||||
|
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
|
||||||
|
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
|
||||||
|
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
|
||||||
|
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
|
||||||
|
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
|
||||||
|
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
|
||||||
|
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
|
||||||
|
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
|
||||||
|
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
|
||||||
|
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
|
||||||
|
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
|
||||||
|
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
|
||||||
|
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
|
||||||
|
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
|
||||||
|
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
|
||||||
|
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
|
||||||
|
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
|
||||||
|
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
|
||||||
|
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
|
||||||
|
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
|
||||||
|
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
|
||||||
|
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
|
||||||
|
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
|
||||||
|
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
|
||||||
|
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
|
||||||
|
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
|
||||||
|
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
|
||||||
|
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
|
||||||
|
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
|
||||||
|
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
|
||||||
|
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
|
||||||
|
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
|
||||||
|
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
|
||||||
|
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
|
||||||
|
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
|
||||||
|
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
|
||||||
|
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
|
||||||
|
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
|
||||||
|
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
|
||||||
|
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
|
||||||
|
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
|
||||||
|
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
|
||||||
|
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
|
||||||
|
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
|
||||||
|
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
|
||||||
|
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
|
||||||
|
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
|
||||||
|
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
|
||||||
|
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
|
||||||
|
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
|
||||||
|
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
|
||||||
|
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
|
||||||
|
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
|
||||||
|
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
|
||||||
|
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
|
||||||
|
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
|
||||||
|
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
|
||||||
|
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
|
||||||
|
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
|
||||||
|
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
|
||||||
|
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
|
||||||
|
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
|
||||||
|
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
|
||||||
|
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
|
||||||
|
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
|
||||||
|
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
|
||||||
|
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
|
||||||
|
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
|
||||||
|
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
|
||||||
|
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
|
||||||
|
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
|
||||||
|
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
|
||||||
|
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
|
||||||
|
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
|
||||||
|
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
|
||||||
|
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
|
||||||
|
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
|
||||||
|
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
|
||||||
|
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
|
||||||
|
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
|
||||||
|
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
|
||||||
|
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
|
||||||
|
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
|
||||||
|
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
|
||||||
|
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
|
||||||
|
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
|
||||||
|
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
|
||||||
|
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
static const double PIo2[] = {
|
||||||
|
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||||
|
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||||
|
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||||
|
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
||||||
|
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
||||||
|
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
||||||
|
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
||||||
|
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||||
|
};
|
||||||
|
|
||||||
|
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
|
||||||
|
{
|
||||||
|
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||||
|
double z,fw,f[20],fq[20],q[20];
|
||||||
|
|
||||||
|
/* initialize jk*/
|
||||||
|
jk = init_jk[prec];
|
||||||
|
jp = jk;
|
||||||
|
|
||||||
|
/* determine jx,jv,q0, note that 3>q0 */
|
||||||
|
jx = nx-1;
|
||||||
|
jv = (e0-3)/24; if(jv<0) jv=0;
|
||||||
|
q0 = e0-24*(jv+1);
|
||||||
|
|
||||||
|
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||||
|
j = jv-jx; m = jx+jk;
|
||||||
|
for (i=0; i<=m; i++,j++)
|
||||||
|
f[i] = j<0 ? 0.0 : (double)ipio2[j];
|
||||||
|
|
||||||
|
/* compute q[0],q[1],...q[jk] */
|
||||||
|
for (i=0; i<=jk; i++) {
|
||||||
|
for (j=0,fw=0.0; j<=jx; j++)
|
||||||
|
fw += x[j]*f[jx+i-j];
|
||||||
|
q[i] = fw;
|
||||||
|
}
|
||||||
|
|
||||||
|
jz = jk;
|
||||||
|
recompute:
|
||||||
|
/* distill q[] into iq[] reversingly */
|
||||||
|
for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
|
||||||
|
fw = (double)(int32_t)(0x1p-24*z);
|
||||||
|
iq[i] = (int32_t)(z - 0x1p24*fw);
|
||||||
|
z = q[j-1]+fw;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* compute n */
|
||||||
|
z = scalbn(z,q0); /* actual value of z */
|
||||||
|
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
|
||||||
|
n = (int32_t)z;
|
||||||
|
z -= (double)n;
|
||||||
|
ih = 0;
|
||||||
|
if (q0 > 0) { /* need iq[jz-1] to determine n */
|
||||||
|
i = iq[jz-1]>>(24-q0); n += i;
|
||||||
|
iq[jz-1] -= i<<(24-q0);
|
||||||
|
ih = iq[jz-1]>>(23-q0);
|
||||||
|
}
|
||||||
|
else if (q0 == 0) ih = iq[jz-1]>>23;
|
||||||
|
else if (z >= 0.5) ih = 2;
|
||||||
|
|
||||||
|
if (ih > 0) { /* q > 0.5 */
|
||||||
|
n += 1; carry = 0;
|
||||||
|
for (i=0; i<jz; i++) { /* compute 1-q */
|
||||||
|
j = iq[i];
|
||||||
|
if (carry == 0) {
|
||||||
|
if (j != 0) {
|
||||||
|
carry = 1;
|
||||||
|
iq[i] = 0x1000000 - j;
|
||||||
|
}
|
||||||
|
} else
|
||||||
|
iq[i] = 0xffffff - j;
|
||||||
|
}
|
||||||
|
if (q0 > 0) { /* rare case: chance is 1 in 12 */
|
||||||
|
switch(q0) {
|
||||||
|
case 1:
|
||||||
|
iq[jz-1] &= 0x7fffff; break;
|
||||||
|
case 2:
|
||||||
|
iq[jz-1] &= 0x3fffff; break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ih == 2) {
|
||||||
|
z = 1.0 - z;
|
||||||
|
if (carry != 0)
|
||||||
|
z -= scalbn(1.0,q0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* check if recomputation is needed */
|
||||||
|
if (z == 0.0) {
|
||||||
|
j = 0;
|
||||||
|
for (i=jz-1; i>=jk; i--) j |= iq[i];
|
||||||
|
if (j == 0) { /* need recomputation */
|
||||||
|
for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
|
||||||
|
|
||||||
|
for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
|
||||||
|
f[jx+i] = (double)ipio2[jv+i];
|
||||||
|
for (j=0,fw=0.0; j<=jx; j++)
|
||||||
|
fw += x[j]*f[jx+i-j];
|
||||||
|
q[i] = fw;
|
||||||
|
}
|
||||||
|
jz += k;
|
||||||
|
goto recompute;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* chop off zero terms */
|
||||||
|
if (z == 0.0) {
|
||||||
|
jz -= 1;
|
||||||
|
q0 -= 24;
|
||||||
|
while (iq[jz] == 0) {
|
||||||
|
jz--;
|
||||||
|
q0 -= 24;
|
||||||
|
}
|
||||||
|
} else { /* break z into 24-bit if necessary */
|
||||||
|
z = scalbn(z,-q0);
|
||||||
|
if (z >= 0x1p24) {
|
||||||
|
fw = (double)(int32_t)(0x1p-24*z);
|
||||||
|
iq[jz] = (int32_t)(z - 0x1p24*fw);
|
||||||
|
jz += 1;
|
||||||
|
q0 += 24;
|
||||||
|
iq[jz] = (int32_t)fw;
|
||||||
|
} else
|
||||||
|
iq[jz] = (int32_t)z;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* convert integer "bit" chunk to floating-point value */
|
||||||
|
fw = scalbn(1.0,q0);
|
||||||
|
for (i=jz; i>=0; i--) {
|
||||||
|
q[i] = fw*(double)iq[i];
|
||||||
|
fw *= 0x1p-24;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||||
|
for(i=jz; i>=0; i--) {
|
||||||
|
for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
|
||||||
|
fw += PIo2[k]*q[i+k];
|
||||||
|
fq[jz-i] = fw;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* compress fq[] into y[] */
|
||||||
|
switch(prec) {
|
||||||
|
case 0:
|
||||||
|
fw = 0.0;
|
||||||
|
for (i=jz; i>=0; i--)
|
||||||
|
fw += fq[i];
|
||||||
|
y[0] = ih==0 ? fw : -fw;
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
case 2:
|
||||||
|
fw = 0.0;
|
||||||
|
for (i=jz; i>=0; i--)
|
||||||
|
fw += fq[i];
|
||||||
|
// TODO: drop excess precision here once double_t is used
|
||||||
|
fw = (double)fw;
|
||||||
|
y[0] = ih==0 ? fw : -fw;
|
||||||
|
fw = fq[0]-fw;
|
||||||
|
for (i=1; i<=jz; i++)
|
||||||
|
fw += fq[i];
|
||||||
|
y[1] = ih==0 ? fw : -fw;
|
||||||
|
break;
|
||||||
|
case 3: /* painful */
|
||||||
|
for (i=jz; i>0; i--) {
|
||||||
|
fw = fq[i-1]+fq[i];
|
||||||
|
fq[i] += fq[i-1]-fw;
|
||||||
|
fq[i-1] = fw;
|
||||||
|
}
|
||||||
|
for (i=jz; i>1; i--) {
|
||||||
|
fw = fq[i-1]+fq[i];
|
||||||
|
fq[i] += fq[i-1]-fw;
|
||||||
|
fq[i-1] = fw;
|
||||||
|
}
|
||||||
|
for (fw=0.0,i=jz; i>=2; i--)
|
||||||
|
fw += fq[i];
|
||||||
|
if (ih==0) {
|
||||||
|
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||||
|
} else {
|
||||||
|
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return n&7;
|
||||||
|
}
|
|
@ -0,0 +1,86 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */
|
||||||
|
/*
|
||||||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||||
|
* Debugged and optimized by Bruce D. Evans.
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
/* __rem_pio2f(x,y)
|
||||||
|
*
|
||||||
|
* return the remainder of x rem pi/2 in *y
|
||||||
|
* use double precision for everything except passing x
|
||||||
|
* use __rem_pio2_large() for large x
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
|
||||||
|
#define EPS DBL_EPSILON
|
||||||
|
#elif FLT_EVAL_METHOD==2
|
||||||
|
#define EPS LDBL_EPSILON
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* invpio2: 53 bits of 2/pi
|
||||||
|
* pio2_1: first 25 bits of pi/2
|
||||||
|
* pio2_1t: pi/2 - pio2_1
|
||||||
|
*/
|
||||||
|
static const double
|
||||||
|
toint = 1.5/EPS,
|
||||||
|
pio4 = 0x1.921fb6p-1,
|
||||||
|
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||||
|
pio2_1 = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */
|
||||||
|
pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
|
||||||
|
|
||||||
|
int __rem_pio2f(float x, double *y)
|
||||||
|
{
|
||||||
|
union {float f; uint32_t i;} u = {x};
|
||||||
|
double tx[1],ty[1];
|
||||||
|
double_t fn;
|
||||||
|
uint32_t ix;
|
||||||
|
int n, sign, e0;
|
||||||
|
|
||||||
|
ix = u.i & 0x7fffffff;
|
||||||
|
/* 25+53 bit pi is good enough for medium size */
|
||||||
|
if (ix < 0x4dc90fdb) { /* |x| ~< 2^28*(pi/2), medium size */
|
||||||
|
/* Use a specialized rint() to get fn. */
|
||||||
|
fn = (double_t)x*invpio2 + toint - toint;
|
||||||
|
n = (int32_t)fn;
|
||||||
|
*y = x - fn*pio2_1 - fn*pio2_1t;
|
||||||
|
/* Matters with directed rounding. */
|
||||||
|
if (predict_false(*y < -pio4)) {
|
||||||
|
n--;
|
||||||
|
fn--;
|
||||||
|
*y = x - fn*pio2_1 - fn*pio2_1t;
|
||||||
|
} else if (predict_false(*y > pio4)) {
|
||||||
|
n++;
|
||||||
|
fn++;
|
||||||
|
*y = x - fn*pio2_1 - fn*pio2_1t;
|
||||||
|
}
|
||||||
|
return n;
|
||||||
|
}
|
||||||
|
if(ix>=0x7f800000) { /* x is inf or NaN */
|
||||||
|
*y = x-x;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
/* scale x into [2^23, 2^24-1] */
|
||||||
|
sign = u.i>>31;
|
||||||
|
e0 = (ix>>23) - (0x7f+23); /* e0 = ilogb(|x|)-23, positive */
|
||||||
|
u.i = ix - (e0<<23);
|
||||||
|
tx[0] = u.f;
|
||||||
|
n = __rem_pio2_large(tx,ty,e0,1,0);
|
||||||
|
if (sign) {
|
||||||
|
*y = -ty[0];
|
||||||
|
return -n;
|
||||||
|
}
|
||||||
|
*y = ty[0];
|
||||||
|
return n;
|
||||||
|
}
|
|
@ -0,0 +1,64 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
/* __sin( x, y, iy)
|
||||||
|
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||||
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||||
|
* Input y is the tail of x.
|
||||||
|
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||||
|
*
|
||||||
|
* Algorithm
|
||||||
|
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||||
|
* 2. Callers must return sin(-0) = -0 without calling here since our
|
||||||
|
* odd polynomial is not evaluated in a way that preserves -0.
|
||||||
|
* Callers may do the optimization sin(x) ~ x for tiny x.
|
||||||
|
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||||
|
* [0,pi/4]
|
||||||
|
* 3 13
|
||||||
|
* sin(x) ~ x + S1*x + ... + S6*x
|
||||||
|
* where
|
||||||
|
*
|
||||||
|
* |sin(x) 2 4 6 8 10 12 | -58
|
||||||
|
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||||
|
* | x |
|
||||||
|
*
|
||||||
|
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||||
|
* ~ sin(x) + (1-x*x/2)*y
|
||||||
|
* For better accuracy, let
|
||||||
|
* 3 2 2 2 2
|
||||||
|
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||||
|
* then 3 2
|
||||||
|
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
static const double
|
||||||
|
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||||||
|
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||||||
|
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
||||||
|
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||||||
|
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||||
|
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||||
|
|
||||||
|
double __sin(double x, double y, int iy)
|
||||||
|
{
|
||||||
|
double_t z,r,v,w;
|
||||||
|
|
||||||
|
z = x*x;
|
||||||
|
w = z*z;
|
||||||
|
r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);
|
||||||
|
v = z*x;
|
||||||
|
if (iy == 0)
|
||||||
|
return x + v*(S1 + z*r);
|
||||||
|
else
|
||||||
|
return x - ((z*(0.5*y - v*r) - y) - v*S1);
|
||||||
|
}
|
|
@ -0,0 +1,36 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
|
||||||
|
/*
|
||||||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||||
|
* Optimized by Bruce D. Evans.
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
|
||||||
|
static const double
|
||||||
|
S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
|
||||||
|
S2 = 0x111110896efbb2.0p-59, /* 0.0083333293858894631756 */
|
||||||
|
S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
|
||||||
|
S4 = 0x16cd878c3b46a7.0p-71; /* 0.0000027183114939898219064 */
|
||||||
|
|
||||||
|
float __sindf(double x)
|
||||||
|
{
|
||||||
|
double_t r, s, w, z;
|
||||||
|
|
||||||
|
/* Try to optimize for parallel evaluation as in __tandf.c. */
|
||||||
|
z = x*x;
|
||||||
|
w = z*z;
|
||||||
|
r = S3 + z*S4;
|
||||||
|
s = z*x;
|
||||||
|
return (x + s*(S1 + z*S2)) + s*w*r;
|
||||||
|
}
|
|
@ -0,0 +1,77 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
/* cos(x)
|
||||||
|
* Return cosine function of x.
|
||||||
|
*
|
||||||
|
* kernel function:
|
||||||
|
* __sin ... sine function on [-pi/4,pi/4]
|
||||||
|
* __cos ... cosine function on [-pi/4,pi/4]
|
||||||
|
* __rem_pio2 ... argument reduction routine
|
||||||
|
*
|
||||||
|
* Method.
|
||||||
|
* Let S,C and T denote the sin, cos and tan respectively on
|
||||||
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||||
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||||
|
* We have
|
||||||
|
*
|
||||||
|
* n sin(x) cos(x) tan(x)
|
||||||
|
* ----------------------------------------------------------
|
||||||
|
* 0 S C T
|
||||||
|
* 1 C -S -1/T
|
||||||
|
* 2 -S -C T
|
||||||
|
* 3 -C S -1/T
|
||||||
|
* ----------------------------------------------------------
|
||||||
|
*
|
||||||
|
* Special cases:
|
||||||
|
* Let trig be any of sin, cos, or tan.
|
||||||
|
* trig(+-INF) is NaN, with signals;
|
||||||
|
* trig(NaN) is that NaN;
|
||||||
|
*
|
||||||
|
* Accuracy:
|
||||||
|
* TRIG(x) returns trig(x) nearly rounded
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
double cos(double x)
|
||||||
|
{
|
||||||
|
double y[2];
|
||||||
|
uint32_t ix;
|
||||||
|
unsigned n;
|
||||||
|
|
||||||
|
GET_HIGH_WORD(ix, x);
|
||||||
|
ix &= 0x7fffffff;
|
||||||
|
|
||||||
|
/* |x| ~< pi/4 */
|
||||||
|
if (ix <= 0x3fe921fb) {
|
||||||
|
if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
|
||||||
|
/* raise inexact if x!=0 */
|
||||||
|
FORCE_EVAL(x + 0x1p120f);
|
||||||
|
return 1.0;
|
||||||
|
}
|
||||||
|
return __cos(x, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* cos(Inf or NaN) is NaN */
|
||||||
|
if (ix >= 0x7ff00000)
|
||||||
|
return x-x;
|
||||||
|
|
||||||
|
/* argument reduction */
|
||||||
|
n = __rem_pio2(x, y);
|
||||||
|
switch (n&3) {
|
||||||
|
case 0: return __cos(y[0], y[1]);
|
||||||
|
case 1: return -__sin(y[0], y[1], 1);
|
||||||
|
case 2: return -__cos(y[0], y[1]);
|
||||||
|
default:
|
||||||
|
return __sin(y[0], y[1], 1);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,78 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */
|
||||||
|
/*
|
||||||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||||
|
* Optimized by Bruce D. Evans.
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
/* Small multiples of pi/2 rounded to double precision. */
|
||||||
|
static const double
|
||||||
|
c1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
|
||||||
|
c2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
|
||||||
|
c3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
|
||||||
|
c4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
|
||||||
|
|
||||||
|
float cosf(float x)
|
||||||
|
{
|
||||||
|
double y;
|
||||||
|
uint32_t ix;
|
||||||
|
unsigned n, sign;
|
||||||
|
|
||||||
|
GET_FLOAT_WORD(ix, x);
|
||||||
|
sign = ix >> 31;
|
||||||
|
ix &= 0x7fffffff;
|
||||||
|
|
||||||
|
if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
|
||||||
|
if (ix < 0x39800000) { /* |x| < 2**-12 */
|
||||||
|
/* raise inexact if x != 0 */
|
||||||
|
FORCE_EVAL(x + 0x1p120f);
|
||||||
|
return 1.0f;
|
||||||
|
}
|
||||||
|
return __cosdf(x);
|
||||||
|
}
|
||||||
|
if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
|
||||||
|
if (ix > 0x4016cbe3) /* |x| ~> 3*pi/4 */
|
||||||
|
return -__cosdf(sign ? x+c2pio2 : x-c2pio2);
|
||||||
|
else {
|
||||||
|
if (sign)
|
||||||
|
return __sindf(x + c1pio2);
|
||||||
|
else
|
||||||
|
return __sindf(c1pio2 - x);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
|
||||||
|
if (ix > 0x40afeddf) /* |x| ~> 7*pi/4 */
|
||||||
|
return __cosdf(sign ? x+c4pio2 : x-c4pio2);
|
||||||
|
else {
|
||||||
|
if (sign)
|
||||||
|
return __sindf(-x - c3pio2);
|
||||||
|
else
|
||||||
|
return __sindf(x - c3pio2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* cos(Inf or NaN) is NaN */
|
||||||
|
if (ix >= 0x7f800000)
|
||||||
|
return x-x;
|
||||||
|
|
||||||
|
/* general argument reduction needed */
|
||||||
|
n = __rem_pio2f(x,&y);
|
||||||
|
switch (n&3) {
|
||||||
|
case 0: return __cosdf(y);
|
||||||
|
case 1: return __sindf(-y);
|
||||||
|
case 2: return -__cosdf(y);
|
||||||
|
default:
|
||||||
|
return __sindf(y);
|
||||||
|
}
|
||||||
|
}
|
|
@ -108,6 +108,27 @@ do { \
|
||||||
#define SET_LOW_WORD(d,lo) \
|
#define SET_LOW_WORD(d,lo) \
|
||||||
INSERT_WORDS(d, asuint64(d)>>32, lo)
|
INSERT_WORDS(d, asuint64(d)>>32, lo)
|
||||||
|
|
||||||
|
#define GET_FLOAT_WORD(w,d) \
|
||||||
|
do { \
|
||||||
|
(w) = asuint(d); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#define SET_FLOAT_WORD(d,w) \
|
||||||
|
do { \
|
||||||
|
(d) = asfloat(w); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
int __rem_pio2_large(double*,double*,int,int,int);
|
||||||
|
|
||||||
|
int __rem_pio2(double,double*);
|
||||||
|
double __sin(double,double,int);
|
||||||
|
double __cos(double,double);
|
||||||
|
|
||||||
|
int __rem_pio2f(float,double*);
|
||||||
|
float __sindf(double);
|
||||||
|
float __cosdf(double);
|
||||||
|
|
||||||
|
float __math_invalidf(float);
|
||||||
double __math_xflow(uint32_t, double);
|
double __math_xflow(uint32_t, double);
|
||||||
double __math_uflow(uint32_t);
|
double __math_uflow(uint32_t);
|
||||||
double __math_oflow(uint32_t);
|
double __math_oflow(uint32_t);
|
||||||
|
|
|
@ -0,0 +1,33 @@
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
double scalbn(double x, int n)
|
||||||
|
{
|
||||||
|
union {double f; uint64_t i;} u;
|
||||||
|
double_t y = x;
|
||||||
|
|
||||||
|
if (n > 1023) {
|
||||||
|
y *= 0x1p1023;
|
||||||
|
n -= 1023;
|
||||||
|
if (n > 1023) {
|
||||||
|
y *= 0x1p1023;
|
||||||
|
n -= 1023;
|
||||||
|
if (n > 1023)
|
||||||
|
n = 1023;
|
||||||
|
}
|
||||||
|
} else if (n < -1022) {
|
||||||
|
/* make sure final n < -53 to avoid double
|
||||||
|
rounding in the subnormal range */
|
||||||
|
y *= 0x1p-1022 * 0x1p53;
|
||||||
|
n += 1022 - 53;
|
||||||
|
if (n < -1022) {
|
||||||
|
y *= 0x1p-1022 * 0x1p53;
|
||||||
|
n += 1022 - 53;
|
||||||
|
if (n < -1022)
|
||||||
|
n = -1022;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
u.i = (uint64_t)(0x3ff+n)<<52;
|
||||||
|
x = y * u.f;
|
||||||
|
return x;
|
||||||
|
}
|
|
@ -0,0 +1,78 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
/* sin(x)
|
||||||
|
* Return sine function of x.
|
||||||
|
*
|
||||||
|
* kernel function:
|
||||||
|
* __sin ... sine function on [-pi/4,pi/4]
|
||||||
|
* __cos ... cose function on [-pi/4,pi/4]
|
||||||
|
* __rem_pio2 ... argument reduction routine
|
||||||
|
*
|
||||||
|
* Method.
|
||||||
|
* Let S,C and T denote the sin, cos and tan respectively on
|
||||||
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||||
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||||
|
* We have
|
||||||
|
*
|
||||||
|
* n sin(x) cos(x) tan(x)
|
||||||
|
* ----------------------------------------------------------
|
||||||
|
* 0 S C T
|
||||||
|
* 1 C -S -1/T
|
||||||
|
* 2 -S -C T
|
||||||
|
* 3 -C S -1/T
|
||||||
|
* ----------------------------------------------------------
|
||||||
|
*
|
||||||
|
* Special cases:
|
||||||
|
* Let trig be any of sin, cos, or tan.
|
||||||
|
* trig(+-INF) is NaN, with signals;
|
||||||
|
* trig(NaN) is that NaN;
|
||||||
|
*
|
||||||
|
* Accuracy:
|
||||||
|
* TRIG(x) returns trig(x) nearly rounded
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
double sin(double x)
|
||||||
|
{
|
||||||
|
double y[2];
|
||||||
|
uint32_t ix;
|
||||||
|
unsigned n;
|
||||||
|
|
||||||
|
/* High word of x. */
|
||||||
|
GET_HIGH_WORD(ix, x);
|
||||||
|
ix &= 0x7fffffff;
|
||||||
|
|
||||||
|
/* |x| ~< pi/4 */
|
||||||
|
if (ix <= 0x3fe921fb) {
|
||||||
|
if (ix < 0x3e500000) { /* |x| < 2**-26 */
|
||||||
|
/* raise inexact if x != 0 and underflow if subnormal*/
|
||||||
|
FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
return __sin(x, 0.0, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* sin(Inf or NaN) is NaN */
|
||||||
|
if (ix >= 0x7ff00000)
|
||||||
|
return x - x;
|
||||||
|
|
||||||
|
/* argument reduction needed */
|
||||||
|
n = __rem_pio2(x, y);
|
||||||
|
switch (n&3) {
|
||||||
|
case 0: return __sin(y[0], y[1], 1);
|
||||||
|
case 1: return __cos(y[0], y[1]);
|
||||||
|
case 2: return -__sin(y[0], y[1], 1);
|
||||||
|
default:
|
||||||
|
return -__cos(y[0], y[1]);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,76 @@
|
||||||
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
|
||||||
|
/*
|
||||||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||||
|
* Optimized by Bruce D. Evans.
|
||||||
|
*/
|
||||||
|
/*
|
||||||
|
* ====================================================
|
||||||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
*
|
||||||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
* Permission to use, copy, modify, and distribute this
|
||||||
|
* software is freely granted, provided that this notice
|
||||||
|
* is preserved.
|
||||||
|
* ====================================================
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "libm.h"
|
||||||
|
|
||||||
|
/* Small multiples of pi/2 rounded to double precision. */
|
||||||
|
static const double
|
||||||
|
s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
|
||||||
|
s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
|
||||||
|
s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
|
||||||
|
s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
|
||||||
|
|
||||||
|
float sinf(float x)
|
||||||
|
{
|
||||||
|
double y;
|
||||||
|
uint32_t ix;
|
||||||
|
int n, sign;
|
||||||
|
|
||||||
|
GET_FLOAT_WORD(ix, x);
|
||||||
|
sign = ix >> 31;
|
||||||
|
ix &= 0x7fffffff;
|
||||||
|
|
||||||
|
if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
|
||||||
|
if (ix < 0x39800000) { /* |x| < 2**-12 */
|
||||||
|
/* raise inexact if x!=0 and underflow if subnormal */
|
||||||
|
FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
return __sindf(x);
|
||||||
|
}
|
||||||
|
if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
|
||||||
|
if (ix <= 0x4016cbe3) { /* |x| ~<= 3pi/4 */
|
||||||
|
if (sign)
|
||||||
|
return -__cosdf(x + s1pio2);
|
||||||
|
else
|
||||||
|
return __cosdf(x - s1pio2);
|
||||||
|
}
|
||||||
|
return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2));
|
||||||
|
}
|
||||||
|
if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
|
||||||
|
if (ix <= 0x40afeddf) { /* |x| ~<= 7*pi/4 */
|
||||||
|
if (sign)
|
||||||
|
return __cosdf(x + s3pio2);
|
||||||
|
else
|
||||||
|
return -__cosdf(x - s3pio2);
|
||||||
|
}
|
||||||
|
return __sindf(sign ? x + s4pio2 : x - s4pio2);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* sin(Inf or NaN) is NaN */
|
||||||
|
if (ix >= 0x7f800000)
|
||||||
|
return x - x;
|
||||||
|
|
||||||
|
/* general argument reduction needed */
|
||||||
|
n = __rem_pio2f(x, &y);
|
||||||
|
switch (n&3) {
|
||||||
|
case 0: return __sindf(y);
|
||||||
|
case 1: return __cosdf(y);
|
||||||
|
case 2: return __sindf(-y);
|
||||||
|
default:
|
||||||
|
return -__cosdf(y);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,83 @@
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include "libm.h"
|
||||||
|
#include "sqrt_data.h"
|
||||||
|
|
||||||
|
#define FENV_SUPPORT 1
|
||||||
|
|
||||||
|
static inline uint32_t mul32(uint32_t a, uint32_t b)
|
||||||
|
{
|
||||||
|
return (uint64_t)a*b >> 32;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* see sqrt.c for more detailed comments. */
|
||||||
|
|
||||||
|
float sqrtf(float x)
|
||||||
|
{
|
||||||
|
uint32_t ix, m, m1, m0, even, ey;
|
||||||
|
|
||||||
|
ix = asuint(x);
|
||||||
|
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
|
||||||
|
/* x < 0x1p-126 or inf or nan. */
|
||||||
|
if (ix * 2 == 0)
|
||||||
|
return x;
|
||||||
|
if (ix == 0x7f800000)
|
||||||
|
return x;
|
||||||
|
if (ix > 0x7f800000)
|
||||||
|
return __math_invalidf(x);
|
||||||
|
/* x is subnormal, normalize it. */
|
||||||
|
ix = asuint(x * 0x1p23f);
|
||||||
|
ix -= 23 << 23;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* x = 4^e m; with int e and m in [1, 4). */
|
||||||
|
even = ix & 0x00800000;
|
||||||
|
m1 = (ix << 8) | 0x80000000;
|
||||||
|
m0 = (ix << 7) & 0x7fffffff;
|
||||||
|
m = even ? m0 : m1;
|
||||||
|
|
||||||
|
/* 2^e is the exponent part of the return value. */
|
||||||
|
ey = ix >> 1;
|
||||||
|
ey += 0x3f800000 >> 1;
|
||||||
|
ey &= 0x7f800000;
|
||||||
|
|
||||||
|
/* compute r ~ 1/sqrt(m), s ~ sqrt(m) with 2 goldschmidt iterations. */
|
||||||
|
static const uint32_t three = 0xc0000000;
|
||||||
|
uint32_t r, s, d, u, i;
|
||||||
|
i = (ix >> 17) % 128;
|
||||||
|
r = (uint32_t)__rsqrt_tab[i] << 16;
|
||||||
|
/* |r*sqrt(m) - 1| < 0x1p-8 */
|
||||||
|
s = mul32(m, r);
|
||||||
|
/* |s/sqrt(m) - 1| < 0x1p-8 */
|
||||||
|
d = mul32(s, r);
|
||||||
|
u = three - d;
|
||||||
|
r = mul32(r, u) << 1;
|
||||||
|
/* |r*sqrt(m) - 1| < 0x1.7bp-16 */
|
||||||
|
s = mul32(s, u) << 1;
|
||||||
|
/* |s/sqrt(m) - 1| < 0x1.7bp-16 */
|
||||||
|
d = mul32(s, r);
|
||||||
|
u = three - d;
|
||||||
|
s = mul32(s, u);
|
||||||
|
/* -0x1.03p-28 < s/sqrt(m) - 1 < 0x1.fp-31 */
|
||||||
|
s = (s - 1)>>6;
|
||||||
|
/* s < sqrt(m) < s + 0x1.08p-23 */
|
||||||
|
|
||||||
|
/* compute nearest rounded result. */
|
||||||
|
uint32_t d0, d1, d2;
|
||||||
|
float y, t;
|
||||||
|
d0 = (m << 16) - s*s;
|
||||||
|
d1 = s - d0;
|
||||||
|
d2 = d1 + s + 1;
|
||||||
|
s += d1 >> 31;
|
||||||
|
s &= 0x007fffff;
|
||||||
|
s |= ey;
|
||||||
|
y = asfloat(s);
|
||||||
|
if (FENV_SUPPORT) {
|
||||||
|
/* handle rounding and inexact exception. */
|
||||||
|
uint32_t tiny = predict_false(d2==0) ? 0 : 0x01000000;
|
||||||
|
tiny |= (d1^d2) & 0x80000000;
|
||||||
|
t = asfloat(tiny);
|
||||||
|
y = eval_as_float(y + t);
|
||||||
|
}
|
||||||
|
return y;
|
||||||
|
}
|
|
@ -1,7 +1,11 @@
|
||||||
#include<keys.h>
|
#include <keys.h>
|
||||||
#include<graphics.h>
|
#include <graphics.h>
|
||||||
|
|
||||||
#include<orca.h>
|
#include <orca.h>
|
||||||
|
|
||||||
|
extern float cosf(float);
|
||||||
|
extern float sinf(float);
|
||||||
|
extern float sqrtf(float);
|
||||||
|
|
||||||
#define NUM_BLOCKS_PER_ROW 7
|
#define NUM_BLOCKS_PER_ROW 7
|
||||||
#define NUM_BLOCKS 42 // 7 * 6
|
#define NUM_BLOCKS 42 // 7 * 6
|
||||||
|
@ -12,6 +16,8 @@
|
||||||
#define BLOCKS_BOTTOM 300.0f
|
#define BLOCKS_BOTTOM 300.0f
|
||||||
const f32 BLOCK_WIDTH = (BLOCKS_WIDTH - ((NUM_BLOCKS_PER_ROW + 1) * BLOCKS_PADDING)) / NUM_BLOCKS_PER_ROW;
|
const f32 BLOCK_WIDTH = (BLOCKS_WIDTH - ((NUM_BLOCKS_PER_ROW + 1) * BLOCKS_PADDING)) / NUM_BLOCKS_PER_ROW;
|
||||||
|
|
||||||
|
#define PADDLE_MAX_LAUNCH_ANGLE 0.7f
|
||||||
|
|
||||||
const mg_color paddleColor = {1, 0, 0, 1};
|
const mg_color paddleColor = {1, 0, 0, 1};
|
||||||
mp_rect paddle = {BLOCKS_WIDTH/2 - 100, 40, 200, 40};
|
mp_rect paddle = {BLOCKS_WIDTH/2 - 100, 40, 200, 40};
|
||||||
|
|
||||||
|
@ -37,6 +43,7 @@ mg_font pongFont;
|
||||||
// TODO(ben): Why is this here? Why isn't it forward-declared by some header?
|
// TODO(ben): Why is this here? Why isn't it forward-declared by some header?
|
||||||
mg_surface mg_surface_main(void);
|
mg_surface mg_surface_main(void);
|
||||||
|
|
||||||
|
f32 lerp(f32 a, f32 b, f32 t);
|
||||||
mp_rect blockRect(int i);
|
mp_rect blockRect(int i);
|
||||||
int checkCollision(mp_rect block);
|
int checkCollision(mp_rect block);
|
||||||
|
|
||||||
|
@ -152,32 +159,35 @@ ORCA_EXPORT void OnFrameRefresh(void)
|
||||||
ball.x = Clamp(ball.x, 0, frameSize.x - ball.w);
|
ball.x = Clamp(ball.x, 0, frameSize.x - ball.w);
|
||||||
ball.y = Clamp(ball.y, 0, frameSize.y - ball.h);
|
ball.y = Clamp(ball.y, 0, frameSize.y - ball.h);
|
||||||
|
|
||||||
if(ball.x + ball.w >= frameSize.x)
|
if (ball.x + ball.w >= frameSize.x) {
|
||||||
{
|
|
||||||
velocity.x = -velocity.x;
|
velocity.x = -velocity.x;
|
||||||
}
|
}
|
||||||
if(ball.x <= 0)
|
if (ball.x <= 0) {
|
||||||
{
|
|
||||||
velocity.x = -velocity.x;
|
velocity.x = -velocity.x;
|
||||||
}
|
}
|
||||||
if(ball.y + ball.h >= frameSize.y)
|
if (ball.y + ball.h >= frameSize.y) {
|
||||||
{
|
|
||||||
velocity.y = -velocity.y;
|
velocity.y = -velocity.y;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(ball.y <= paddle.y + paddle.h
|
if (
|
||||||
&& ball.x+ball.w >= paddle.x
|
ball.y <= paddle.y + paddle.h
|
||||||
&& ball.x <= paddle.x + paddle.w
|
&& ball.x+ball.w >= paddle.x
|
||||||
&& velocity.y < 0)
|
&& ball.x <= paddle.x + paddle.w
|
||||||
{
|
&& velocity.y < 0
|
||||||
velocity.y *= -1;
|
) {
|
||||||
|
f32 t = ((ball.x + ball.w/2) - paddle.x) / paddle.w;
|
||||||
|
f32 launchAngle = lerp(-PADDLE_MAX_LAUNCH_ANGLE, PADDLE_MAX_LAUNCH_ANGLE, t);
|
||||||
|
f32 speed = sqrtf(velocity.x*velocity.x + velocity.y*velocity.y);
|
||||||
|
velocity = (vec2){
|
||||||
|
sinf(launchAngle) * speed,
|
||||||
|
cosf(launchAngle) * speed,
|
||||||
|
};
|
||||||
ball.y = paddle.y + paddle.h;
|
ball.y = paddle.y + paddle.h;
|
||||||
|
|
||||||
log_info("PONG!");
|
log_info("PONG!");
|
||||||
}
|
}
|
||||||
|
|
||||||
if(ball.y <= 0)
|
if (ball.y <= 0) {
|
||||||
{
|
|
||||||
ball.x = frameSize.x/2. - ball.w;
|
ball.x = frameSize.x/2. - ball.w;
|
||||||
ball.y = frameSize.y/2. - ball.h;
|
ball.y = frameSize.y/2. - ball.h;
|
||||||
}
|
}
|
||||||
|
@ -397,3 +407,7 @@ int checkCollision(mp_rect block) {
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
f32 lerp(f32 a, f32 b, f32 t) {
|
||||||
|
return (1 - t) * a + t * b;
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue