Milepost UI demo #18
			
				
			
		
		
		
	|  | @ -18,6 +18,8 @@ Debug/* | ||||||
| 
 | 
 | ||||||
| src/bindgen_core_api.c | src/bindgen_core_api.c | ||||||
| src/bindgen_gles_api.c | src/bindgen_gles_api.c | ||||||
| *bind_gen.c |  | ||||||
| sdk/io_stubs.c | sdk/io_stubs.c | ||||||
| sdk/orca_surface.c | sdk/orca_surface.c | ||||||
|  | *bind_gen.c | ||||||
|  | 
 | ||||||
|  | .vscode/settings.json | ||||||
|  |  | ||||||
|  | @ -13,7 +13,7 @@ if %target% == wasm3 ( | ||||||
| 	set wasm3_sources=/I .\ext\wasm3\source\*.c | 	set wasm3_sources=/I .\ext\wasm3\source\*.c | ||||||
| 
 | 
 | ||||||
| 	for %%f in ( .\ext\wasm3\source\*.c ) do ( | 	for %%f in ( .\ext\wasm3\source\*.c ) do ( | ||||||
| 		cl /nologo /Zi /Zc:preprocessor /c /Fo:bin\obj\%%~nf.obj %wasm3_includes% %%f | 		cl /nologo /Zi /Zc:preprocessor /O2 /c /Fo:bin\obj\%%~nf.obj %wasm3_includes% %%f | ||||||
| 	) | 	) | ||||||
| 	lib /nologo /out:bin\wasm3.lib bin\obj\*.obj | 	lib /nologo /out:bin\wasm3.lib bin\obj\*.obj | ||||||
| ) | ) | ||||||
|  |  | ||||||
|  | @ -54,6 +54,9 @@ double      acos(double); | ||||||
| 
 | 
 | ||||||
| double      ceil(double); | double      ceil(double); | ||||||
| 
 | 
 | ||||||
|  | double      cos(double); | ||||||
|  | float       cosf(float); | ||||||
|  | 
 | ||||||
| double      fabs(double); | double      fabs(double); | ||||||
| 
 | 
 | ||||||
| double      floor(double); | double      floor(double); | ||||||
|  | @ -62,7 +65,27 @@ double      fmod(double, double); | ||||||
| 
 | 
 | ||||||
| double      pow(double, double); | double      pow(double, double); | ||||||
| 
 | 
 | ||||||
|  | double      scalbn(double, int); | ||||||
|  | 
 | ||||||
|  | double      sin(double); | ||||||
|  | float       sinf(float); | ||||||
|  | 
 | ||||||
| double      sqrt(double); | double      sqrt(double); | ||||||
|  | float       sqrtf(float); | ||||||
|  | 
 | ||||||
|  | #define M_E             2.7182818284590452354   /* e */ | ||||||
|  | #define M_LOG2E         1.4426950408889634074   /* log_2 e */ | ||||||
|  | #define M_LOG10E        0.43429448190325182765  /* log_10 e */ | ||||||
|  | #define M_LN2           0.69314718055994530942  /* log_e 2 */ | ||||||
|  | #define M_LN10          2.30258509299404568402  /* log_e 10 */ | ||||||
|  | #define M_PI            3.14159265358979323846  /* pi */ | ||||||
|  | #define M_PI_2          1.57079632679489661923  /* pi/2 */ | ||||||
|  | #define M_PI_4          0.78539816339744830962  /* pi/4 */ | ||||||
|  | #define M_1_PI          0.31830988618379067154  /* 1/pi */ | ||||||
|  | #define M_2_PI          0.63661977236758134308  /* 2/pi */ | ||||||
|  | #define M_2_SQRTPI      1.12837916709551257390  /* 2/sqrt(pi) */ | ||||||
|  | #define M_SQRT2         1.41421356237309504880  /* sqrt(2) */ | ||||||
|  | #define M_SQRT1_2       0.70710678118654752440  /* 1/sqrt(2) */ | ||||||
| 
 | 
 | ||||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||||
| } | } | ||||||
|  |  | ||||||
|  | @ -0,0 +1,71 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunSoft, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * __cos( x,  y ) | ||||||
|  |  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 | ||||||
|  |  * Input x is assumed to be bounded by ~pi/4 in magnitude. | ||||||
|  |  * Input y is the tail of x. | ||||||
|  |  * | ||||||
|  |  * Algorithm | ||||||
|  |  *      1. Since cos(-x) = cos(x), we need only to consider positive x. | ||||||
|  |  *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. | ||||||
|  |  *      3. cos(x) is approximated by a polynomial of degree 14 on | ||||||
|  |  *         [0,pi/4] | ||||||
|  |  *                                       4            14 | ||||||
|  |  *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x | ||||||
|  |  *         where the remez error is | ||||||
|  |  * | ||||||
|  |  *      |              2     4     6     8     10    12     14 |     -58 | ||||||
|  |  *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2 | ||||||
|  |  *      |                                                      | | ||||||
|  |  * | ||||||
|  |  *                     4     6     8     10    12     14 | ||||||
|  |  *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then | ||||||
|  |  *             cos(x) ~ 1 - x*x/2 + r | ||||||
|  |  *         since cos(x+y) ~ cos(x) - sin(x)*y | ||||||
|  |  *                        ~ cos(x) - x*y, | ||||||
|  |  *         a correction term is necessary in cos(x) and hence | ||||||
|  |  *              cos(x+y) = 1 - (x*x/2 - (r - x*y)) | ||||||
|  |  *         For better accuracy, rearrange to | ||||||
|  |  *              cos(x+y) ~ w + (tmp + (r-x*y)) | ||||||
|  |  *         where w = 1 - x*x/2 and tmp is a tiny correction term | ||||||
|  |  *         (1 - x*x/2 == w + tmp exactly in infinite precision). | ||||||
|  |  *         The exactness of w + tmp in infinite precision depends on w | ||||||
|  |  *         and tmp having the same precision as x.  If they have extra | ||||||
|  |  *         precision due to compiler bugs, then the extra precision is | ||||||
|  |  *         only good provided it is retained in all terms of the final | ||||||
|  |  *         expression for cos().  Retention happens in all cases tested | ||||||
|  |  *         under FreeBSD, so don't pessimize things by forcibly clipping | ||||||
|  |  *         any extra precision in w. | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | static const double | ||||||
|  | C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ | ||||||
|  | C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ | ||||||
|  | C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ | ||||||
|  | C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ | ||||||
|  | C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ | ||||||
|  | C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ | ||||||
|  | 
 | ||||||
|  | double __cos(double x, double y) | ||||||
|  | { | ||||||
|  | 	double_t hz,z,r,w; | ||||||
|  | 
 | ||||||
|  | 	z  = x*x; | ||||||
|  | 	w  = z*z; | ||||||
|  | 	r  = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6)); | ||||||
|  | 	hz = 0.5*z; | ||||||
|  | 	w  = 1.0-hz; | ||||||
|  | 	return w + (((1.0-w)-hz) + (z*r-x*y)); | ||||||
|  | } | ||||||
|  | @ -0,0 +1,35 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */ | ||||||
|  | /*
 | ||||||
|  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | ||||||
|  |  * Debugged and optimized by Bruce D. Evans. | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | /* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */ | ||||||
|  | static const double | ||||||
|  | C0  = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */ | ||||||
|  | C1  =  0x155553e1053a42.0p-57, /*  0.0416666233237390631894 */ | ||||||
|  | C2  = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */ | ||||||
|  | C3  =  0x199342e0ee5069.0p-68; /*  0.0000243904487962774090654 */ | ||||||
|  | 
 | ||||||
|  | float __cosdf(double x) | ||||||
|  | { | ||||||
|  | 	double_t r, w, z; | ||||||
|  | 
 | ||||||
|  | 	/* Try to optimize for parallel evaluation as in __tandf.c. */ | ||||||
|  | 	z = x*x; | ||||||
|  | 	w = z*z; | ||||||
|  | 	r = C2+z*C3; | ||||||
|  | 	return ((1.0+z*C0) + w*C1) + (w*z)*r; | ||||||
|  | } | ||||||
|  | @ -0,0 +1,6 @@ | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | float __math_invalidf(float x) | ||||||
|  | { | ||||||
|  | 	return (x - x) / (x - x); | ||||||
|  | } | ||||||
|  | @ -0,0 +1,190 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunSoft, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  * | ||||||
|  |  * Optimized by Bruce D. Evans. | ||||||
|  |  */ | ||||||
|  | /* __rem_pio2(x,y)
 | ||||||
|  |  * | ||||||
|  |  * return the remainder of x rem pi/2 in y[0]+y[1] | ||||||
|  |  * use __rem_pio2_large() for large x | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | #if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1 | ||||||
|  | #define EPS DBL_EPSILON | ||||||
|  | #elif FLT_EVAL_METHOD==2 | ||||||
|  | #define EPS LDBL_EPSILON | ||||||
|  | #endif | ||||||
|  | 
 | ||||||
|  | /*
 | ||||||
|  |  * invpio2:  53 bits of 2/pi | ||||||
|  |  * pio2_1:   first  33 bit of pi/2 | ||||||
|  |  * pio2_1t:  pi/2 - pio2_1 | ||||||
|  |  * pio2_2:   second 33 bit of pi/2 | ||||||
|  |  * pio2_2t:  pi/2 - (pio2_1+pio2_2) | ||||||
|  |  * pio2_3:   third  33 bit of pi/2 | ||||||
|  |  * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3) | ||||||
|  |  */ | ||||||
|  | static const double | ||||||
|  | toint   = 1.5/EPS, | ||||||
|  | pio4    = 0x1.921fb54442d18p-1, | ||||||
|  | invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ | ||||||
|  | pio2_1  = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ | ||||||
|  | pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ | ||||||
|  | pio2_2  = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ | ||||||
|  | pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ | ||||||
|  | pio2_3  = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ | ||||||
|  | pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ | ||||||
|  | 
 | ||||||
|  | /* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */ | ||||||
|  | int __rem_pio2(double x, double *y) | ||||||
|  | { | ||||||
|  | 	union {double f; uint64_t i;} u = {x}; | ||||||
|  | 	double_t z,w,t,r,fn; | ||||||
|  | 	double tx[3],ty[2]; | ||||||
|  | 	uint32_t ix; | ||||||
|  | 	int sign, n, ex, ey, i; | ||||||
|  | 
 | ||||||
|  | 	sign = u.i>>63; | ||||||
|  | 	ix = u.i>>32 & 0x7fffffff; | ||||||
|  | 	if (ix <= 0x400f6a7a) {  /* |x| ~<= 5pi/4 */ | ||||||
|  | 		if ((ix & 0xfffff) == 0x921fb)  /* |x| ~= pi/2 or 2pi/2 */ | ||||||
|  | 			goto medium;  /* cancellation -- use medium case */ | ||||||
|  | 		if (ix <= 0x4002d97c) {  /* |x| ~<= 3pi/4 */ | ||||||
|  | 			if (!sign) { | ||||||
|  | 				z = x - pio2_1;  /* one round good to 85 bits */ | ||||||
|  | 				y[0] = z - pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) - pio2_1t; | ||||||
|  | 				return 1; | ||||||
|  | 			} else { | ||||||
|  | 				z = x + pio2_1; | ||||||
|  | 				y[0] = z + pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) + pio2_1t; | ||||||
|  | 				return -1; | ||||||
|  | 			} | ||||||
|  | 		} else { | ||||||
|  | 			if (!sign) { | ||||||
|  | 				z = x - 2*pio2_1; | ||||||
|  | 				y[0] = z - 2*pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) - 2*pio2_1t; | ||||||
|  | 				return 2; | ||||||
|  | 			} else { | ||||||
|  | 				z = x + 2*pio2_1; | ||||||
|  | 				y[0] = z + 2*pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) + 2*pio2_1t; | ||||||
|  | 				return -2; | ||||||
|  | 			} | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 	if (ix <= 0x401c463b) {  /* |x| ~<= 9pi/4 */ | ||||||
|  | 		if (ix <= 0x4015fdbc) {  /* |x| ~<= 7pi/4 */ | ||||||
|  | 			if (ix == 0x4012d97c)  /* |x| ~= 3pi/2 */ | ||||||
|  | 				goto medium; | ||||||
|  | 			if (!sign) { | ||||||
|  | 				z = x - 3*pio2_1; | ||||||
|  | 				y[0] = z - 3*pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) - 3*pio2_1t; | ||||||
|  | 				return 3; | ||||||
|  | 			} else { | ||||||
|  | 				z = x + 3*pio2_1; | ||||||
|  | 				y[0] = z + 3*pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) + 3*pio2_1t; | ||||||
|  | 				return -3; | ||||||
|  | 			} | ||||||
|  | 		} else { | ||||||
|  | 			if (ix == 0x401921fb)  /* |x| ~= 4pi/2 */ | ||||||
|  | 				goto medium; | ||||||
|  | 			if (!sign) { | ||||||
|  | 				z = x - 4*pio2_1; | ||||||
|  | 				y[0] = z - 4*pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) - 4*pio2_1t; | ||||||
|  | 				return 4; | ||||||
|  | 			} else { | ||||||
|  | 				z = x + 4*pio2_1; | ||||||
|  | 				y[0] = z + 4*pio2_1t; | ||||||
|  | 				y[1] = (z-y[0]) + 4*pio2_1t; | ||||||
|  | 				return -4; | ||||||
|  | 			} | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 	if (ix < 0x413921fb) {  /* |x| ~< 2^20*(pi/2), medium size */ | ||||||
|  | medium: | ||||||
|  | 		/* rint(x/(pi/2)) */ | ||||||
|  | 		fn = (double_t)x*invpio2 + toint - toint; | ||||||
|  | 		n = (int32_t)fn; | ||||||
|  | 		r = x - fn*pio2_1; | ||||||
|  | 		w = fn*pio2_1t;  /* 1st round, good to 85 bits */ | ||||||
|  | 		/* Matters with directed rounding. */ | ||||||
|  | 		if (predict_false(r - w < -pio4)) { | ||||||
|  | 			n--; | ||||||
|  | 			fn--; | ||||||
|  | 			r = x - fn*pio2_1; | ||||||
|  | 			w = fn*pio2_1t; | ||||||
|  | 		} else if (predict_false(r - w > pio4)) { | ||||||
|  | 			n++; | ||||||
|  | 			fn++; | ||||||
|  | 			r = x - fn*pio2_1; | ||||||
|  | 			w = fn*pio2_1t; | ||||||
|  | 		} | ||||||
|  | 		y[0] = r - w; | ||||||
|  | 		u.f = y[0]; | ||||||
|  | 		ey = u.i>>52 & 0x7ff; | ||||||
|  | 		ex = ix>>20; | ||||||
|  | 		if (ex - ey > 16) { /* 2nd round, good to 118 bits */ | ||||||
|  | 			t = r; | ||||||
|  | 			w = fn*pio2_2; | ||||||
|  | 			r = t - w; | ||||||
|  | 			w = fn*pio2_2t - ((t-r)-w); | ||||||
|  | 			y[0] = r - w; | ||||||
|  | 			u.f = y[0]; | ||||||
|  | 			ey = u.i>>52 & 0x7ff; | ||||||
|  | 			if (ex - ey > 49) {  /* 3rd round, good to 151 bits, covers all cases */ | ||||||
|  | 				t = r; | ||||||
|  | 				w = fn*pio2_3; | ||||||
|  | 				r = t - w; | ||||||
|  | 				w = fn*pio2_3t - ((t-r)-w); | ||||||
|  | 				y[0] = r - w; | ||||||
|  | 			} | ||||||
|  | 		} | ||||||
|  | 		y[1] = (r - y[0]) - w; | ||||||
|  | 		return n; | ||||||
|  | 	} | ||||||
|  | 	/*
 | ||||||
|  | 	 * all other (large) arguments | ||||||
|  | 	 */ | ||||||
|  | 	if (ix >= 0x7ff00000) {  /* x is inf or NaN */ | ||||||
|  | 		y[0] = y[1] = x - x; | ||||||
|  | 		return 0; | ||||||
|  | 	} | ||||||
|  | 	/* set z = scalbn(|x|,-ilogb(x)+23) */ | ||||||
|  | 	u.f = x; | ||||||
|  | 	u.i &= (uint64_t)-1>>12; | ||||||
|  | 	u.i |= (uint64_t)(0x3ff + 23)<<52; | ||||||
|  | 	z = u.f; | ||||||
|  | 	for (i=0; i < 2; i++) { | ||||||
|  | 		tx[i] = (double)(int32_t)z; | ||||||
|  | 		z     = (z-tx[i])*0x1p24; | ||||||
|  | 	} | ||||||
|  | 	tx[i] = z; | ||||||
|  | 	/* skip zero terms, first term is non-zero */ | ||||||
|  | 	while (tx[i] == 0.0) | ||||||
|  | 		i--; | ||||||
|  | 	n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1); | ||||||
|  | 	if (sign) { | ||||||
|  | 		y[0] = -ty[0]; | ||||||
|  | 		y[1] = -ty[1]; | ||||||
|  | 		return -n; | ||||||
|  | 	} | ||||||
|  | 	y[0] = ty[0]; | ||||||
|  | 	y[1] = ty[1]; | ||||||
|  | 	return n; | ||||||
|  | } | ||||||
|  | @ -0,0 +1,442 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunSoft, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * __rem_pio2_large(x,y,e0,nx,prec) | ||||||
|  |  * double x[],y[]; int e0,nx,prec; | ||||||
|  |  * | ||||||
|  |  * __rem_pio2_large return the last three digits of N with | ||||||
|  |  *              y = x - N*pi/2 | ||||||
|  |  * so that |y| < pi/2. | ||||||
|  |  * | ||||||
|  |  * The method is to compute the integer (mod 8) and fraction parts of | ||||||
|  |  * (2/pi)*x without doing the full multiplication. In general we | ||||||
|  |  * skip the part of the product that are known to be a huge integer ( | ||||||
|  |  * more accurately, = 0 mod 8 ). Thus the number of operations are | ||||||
|  |  * independent of the exponent of the input. | ||||||
|  |  * | ||||||
|  |  * (2/pi) is represented by an array of 24-bit integers in ipio2[]. | ||||||
|  |  * | ||||||
|  |  * Input parameters: | ||||||
|  |  *      x[]     The input value (must be positive) is broken into nx | ||||||
|  |  *              pieces of 24-bit integers in double precision format. | ||||||
|  |  *              x[i] will be the i-th 24 bit of x. The scaled exponent | ||||||
|  |  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 | ||||||
|  |  *              match x's up to 24 bits. | ||||||
|  |  * | ||||||
|  |  *              Example of breaking a double positive z into x[0]+x[1]+x[2]: | ||||||
|  |  *                      e0 = ilogb(z)-23 | ||||||
|  |  *                      z  = scalbn(z,-e0) | ||||||
|  |  *              for i = 0,1,2 | ||||||
|  |  *                      x[i] = floor(z) | ||||||
|  |  *                      z    = (z-x[i])*2**24 | ||||||
|  |  * | ||||||
|  |  * | ||||||
|  |  *      y[]     ouput result in an array of double precision numbers. | ||||||
|  |  *              The dimension of y[] is: | ||||||
|  |  *                      24-bit  precision       1 | ||||||
|  |  *                      53-bit  precision       2 | ||||||
|  |  *                      64-bit  precision       2 | ||||||
|  |  *                      113-bit precision       3 | ||||||
|  |  *              The actual value is the sum of them. Thus for 113-bit | ||||||
|  |  *              precison, one may have to do something like: | ||||||
|  |  * | ||||||
|  |  *              long double t,w,r_head, r_tail; | ||||||
|  |  *              t = (long double)y[2] + (long double)y[1]; | ||||||
|  |  *              w = (long double)y[0]; | ||||||
|  |  *              r_head = t+w; | ||||||
|  |  *              r_tail = w - (r_head - t); | ||||||
|  |  * | ||||||
|  |  *      e0      The exponent of x[0]. Must be <= 16360 or you need to | ||||||
|  |  *              expand the ipio2 table. | ||||||
|  |  * | ||||||
|  |  *      nx      dimension of x[] | ||||||
|  |  * | ||||||
|  |  *      prec    an integer indicating the precision: | ||||||
|  |  *                      0       24  bits (single) | ||||||
|  |  *                      1       53  bits (double) | ||||||
|  |  *                      2       64  bits (extended) | ||||||
|  |  *                      3       113 bits (quad) | ||||||
|  |  * | ||||||
|  |  * External function: | ||||||
|  |  *      double scalbn(), floor(); | ||||||
|  |  * | ||||||
|  |  * | ||||||
|  |  * Here is the description of some local variables: | ||||||
|  |  * | ||||||
|  |  *      jk      jk+1 is the initial number of terms of ipio2[] needed | ||||||
|  |  *              in the computation. The minimum and recommended value | ||||||
|  |  *              for jk is 3,4,4,6 for single, double, extended, and quad. | ||||||
|  |  *              jk+1 must be 2 larger than you might expect so that our | ||||||
|  |  *              recomputation test works. (Up to 24 bits in the integer | ||||||
|  |  *              part (the 24 bits of it that we compute) and 23 bits in | ||||||
|  |  *              the fraction part may be lost to cancelation before we | ||||||
|  |  *              recompute.) | ||||||
|  |  * | ||||||
|  |  *      jz      local integer variable indicating the number of | ||||||
|  |  *              terms of ipio2[] used. | ||||||
|  |  * | ||||||
|  |  *      jx      nx - 1 | ||||||
|  |  * | ||||||
|  |  *      jv      index for pointing to the suitable ipio2[] for the | ||||||
|  |  *              computation. In general, we want | ||||||
|  |  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 | ||||||
|  |  *              is an integer. Thus | ||||||
|  |  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv | ||||||
|  |  *              Hence jv = max(0,(e0-3)/24). | ||||||
|  |  * | ||||||
|  |  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk. | ||||||
|  |  * | ||||||
|  |  *      q[]     double array with integral value, representing the | ||||||
|  |  *              24-bits chunk of the product of x and 2/pi. | ||||||
|  |  * | ||||||
|  |  *      q0      the corresponding exponent of q[0]. Note that the | ||||||
|  |  *              exponent for q[i] would be q0-24*i. | ||||||
|  |  * | ||||||
|  |  *      PIo2[]  double precision array, obtained by cutting pi/2 | ||||||
|  |  *              into 24 bits chunks. | ||||||
|  |  * | ||||||
|  |  *      f[]     ipio2[] in floating point | ||||||
|  |  * | ||||||
|  |  *      iq[]    integer array by breaking up q[] in 24-bits chunk. | ||||||
|  |  * | ||||||
|  |  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk] | ||||||
|  |  * | ||||||
|  |  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence | ||||||
|  |  *              it also indicates the *sign* of the result. | ||||||
|  |  * | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * Constants: | ||||||
|  |  * The hexadecimal values are the intended ones for the following | ||||||
|  |  * constants. The decimal values may be used, provided that the | ||||||
|  |  * compiler will convert from decimal to binary accurately enough | ||||||
|  |  * to produce the hexadecimal values shown. | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | static const int init_jk[] = {3,4,4,6}; /* initial value for jk */ | ||||||
|  | 
 | ||||||
|  | /*
 | ||||||
|  |  * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi | ||||||
|  |  * | ||||||
|  |  *              integer array, contains the (24*i)-th to (24*i+23)-th | ||||||
|  |  *              bit of 2/pi after binary point. The corresponding | ||||||
|  |  *              floating value is | ||||||
|  |  * | ||||||
|  |  *                      ipio2[i] * 2^(-24(i+1)). | ||||||
|  |  * | ||||||
|  |  * NB: This table must have at least (e0-3)/24 + jk terms. | ||||||
|  |  *     For quad precision (e0 <= 16360, jk = 6), this is 686. | ||||||
|  |  */ | ||||||
|  | static const int32_t ipio2[] = { | ||||||
|  | 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, | ||||||
|  | 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, | ||||||
|  | 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, | ||||||
|  | 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, | ||||||
|  | 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, | ||||||
|  | 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, | ||||||
|  | 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, | ||||||
|  | 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, | ||||||
|  | 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, | ||||||
|  | 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, | ||||||
|  | 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, | ||||||
|  | 
 | ||||||
|  | #if LDBL_MAX_EXP > 1024 | ||||||
|  | 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, | ||||||
|  | 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, | ||||||
|  | 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35, | ||||||
|  | 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30, | ||||||
|  | 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, | ||||||
|  | 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4, | ||||||
|  | 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770, | ||||||
|  | 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, | ||||||
|  | 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19, | ||||||
|  | 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, | ||||||
|  | 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, | ||||||
|  | 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6, | ||||||
|  | 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E, | ||||||
|  | 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, | ||||||
|  | 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3, | ||||||
|  | 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, | ||||||
|  | 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, | ||||||
|  | 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612, | ||||||
|  | 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929, | ||||||
|  | 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, | ||||||
|  | 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B, | ||||||
|  | 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, | ||||||
|  | 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, | ||||||
|  | 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB, | ||||||
|  | 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC, | ||||||
|  | 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, | ||||||
|  | 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F, | ||||||
|  | 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5, | ||||||
|  | 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, | ||||||
|  | 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B, | ||||||
|  | 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, | ||||||
|  | 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, | ||||||
|  | 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3, | ||||||
|  | 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3, | ||||||
|  | 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, | ||||||
|  | 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F, | ||||||
|  | 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, | ||||||
|  | 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, | ||||||
|  | 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51, | ||||||
|  | 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0, | ||||||
|  | 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, | ||||||
|  | 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6, | ||||||
|  | 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, | ||||||
|  | 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, | ||||||
|  | 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328, | ||||||
|  | 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D, | ||||||
|  | 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, | ||||||
|  | 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B, | ||||||
|  | 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4, | ||||||
|  | 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, | ||||||
|  | 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F, | ||||||
|  | 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, | ||||||
|  | 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, | ||||||
|  | 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4, | ||||||
|  | 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761, | ||||||
|  | 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, | ||||||
|  | 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30, | ||||||
|  | 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, | ||||||
|  | 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, | ||||||
|  | 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1, | ||||||
|  | 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C, | ||||||
|  | 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, | ||||||
|  | 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08, | ||||||
|  | 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, | ||||||
|  | 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, | ||||||
|  | 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4, | ||||||
|  | 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC, | ||||||
|  | 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, | ||||||
|  | 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0, | ||||||
|  | 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C, | ||||||
|  | 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, | ||||||
|  | 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC, | ||||||
|  | 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, | ||||||
|  | 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, | ||||||
|  | 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7, | ||||||
|  | 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5, | ||||||
|  | 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, | ||||||
|  | 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4, | ||||||
|  | 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, | ||||||
|  | 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, | ||||||
|  | 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2, | ||||||
|  | 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138, | ||||||
|  | 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, | ||||||
|  | 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569, | ||||||
|  | 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, | ||||||
|  | 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, | ||||||
|  | 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D, | ||||||
|  | 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F, | ||||||
|  | 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, | ||||||
|  | 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569, | ||||||
|  | 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B, | ||||||
|  | 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, | ||||||
|  | 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41, | ||||||
|  | 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, | ||||||
|  | 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, | ||||||
|  | 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110, | ||||||
|  | 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8, | ||||||
|  | 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, | ||||||
|  | 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A, | ||||||
|  | 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, | ||||||
|  | 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, | ||||||
|  | 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616, | ||||||
|  | 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B, | ||||||
|  | 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0, | ||||||
|  | #endif | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | static const double PIo2[] = { | ||||||
|  |   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ | ||||||
|  |   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ | ||||||
|  |   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ | ||||||
|  |   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ | ||||||
|  |   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ | ||||||
|  |   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ | ||||||
|  |   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ | ||||||
|  |   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec) | ||||||
|  | { | ||||||
|  | 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; | ||||||
|  | 	double z,fw,f[20],fq[20],q[20]; | ||||||
|  | 
 | ||||||
|  | 	/* initialize jk*/ | ||||||
|  | 	jk = init_jk[prec]; | ||||||
|  | 	jp = jk; | ||||||
|  | 
 | ||||||
|  | 	/* determine jx,jv,q0, note that 3>q0 */ | ||||||
|  | 	jx = nx-1; | ||||||
|  | 	jv = (e0-3)/24;  if(jv<0) jv=0; | ||||||
|  | 	q0 = e0-24*(jv+1); | ||||||
|  | 
 | ||||||
|  | 	/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ | ||||||
|  | 	j = jv-jx; m = jx+jk; | ||||||
|  | 	for (i=0; i<=m; i++,j++) | ||||||
|  | 		f[i] = j<0 ? 0.0 : (double)ipio2[j]; | ||||||
|  | 
 | ||||||
|  | 	/* compute q[0],q[1],...q[jk] */ | ||||||
|  | 	for (i=0; i<=jk; i++) { | ||||||
|  | 		for (j=0,fw=0.0; j<=jx; j++) | ||||||
|  | 			fw += x[j]*f[jx+i-j]; | ||||||
|  | 		q[i] = fw; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	jz = jk; | ||||||
|  | recompute: | ||||||
|  | 	/* distill q[] into iq[] reversingly */ | ||||||
|  | 	for (i=0,j=jz,z=q[jz]; j>0; i++,j--) { | ||||||
|  | 		fw    = (double)(int32_t)(0x1p-24*z); | ||||||
|  | 		iq[i] = (int32_t)(z - 0x1p24*fw); | ||||||
|  | 		z     = q[j-1]+fw; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* compute n */ | ||||||
|  | 	z  = scalbn(z,q0);       /* actual value of z */ | ||||||
|  | 	z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ | ||||||
|  | 	n  = (int32_t)z; | ||||||
|  | 	z -= (double)n; | ||||||
|  | 	ih = 0; | ||||||
|  | 	if (q0 > 0) {  /* need iq[jz-1] to determine n */ | ||||||
|  | 		i  = iq[jz-1]>>(24-q0); n += i; | ||||||
|  | 		iq[jz-1] -= i<<(24-q0); | ||||||
|  | 		ih = iq[jz-1]>>(23-q0); | ||||||
|  | 	} | ||||||
|  | 	else if (q0 == 0) ih = iq[jz-1]>>23; | ||||||
|  | 	else if (z >= 0.5) ih = 2; | ||||||
|  | 
 | ||||||
|  | 	if (ih > 0) {  /* q > 0.5 */ | ||||||
|  | 		n += 1; carry = 0; | ||||||
|  | 		for (i=0; i<jz; i++) {  /* compute 1-q */ | ||||||
|  | 			j = iq[i]; | ||||||
|  | 			if (carry == 0) { | ||||||
|  | 				if (j != 0) { | ||||||
|  | 					carry = 1; | ||||||
|  | 					iq[i] = 0x1000000 - j; | ||||||
|  | 				} | ||||||
|  | 			} else | ||||||
|  | 				iq[i] = 0xffffff - j; | ||||||
|  | 		} | ||||||
|  | 		if (q0 > 0) {  /* rare case: chance is 1 in 12 */ | ||||||
|  | 			switch(q0) { | ||||||
|  | 			case 1: | ||||||
|  | 				iq[jz-1] &= 0x7fffff; break; | ||||||
|  | 			case 2: | ||||||
|  | 				iq[jz-1] &= 0x3fffff; break; | ||||||
|  | 			} | ||||||
|  | 		} | ||||||
|  | 		if (ih == 2) { | ||||||
|  | 			z = 1.0 - z; | ||||||
|  | 			if (carry != 0) | ||||||
|  | 				z -= scalbn(1.0,q0); | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* check if recomputation is needed */ | ||||||
|  | 	if (z == 0.0) { | ||||||
|  | 		j = 0; | ||||||
|  | 		for (i=jz-1; i>=jk; i--) j |= iq[i]; | ||||||
|  | 		if (j == 0) {  /* need recomputation */ | ||||||
|  | 			for (k=1; iq[jk-k]==0; k++);  /* k = no. of terms needed */ | ||||||
|  | 
 | ||||||
|  | 			for (i=jz+1; i<=jz+k; i++) {  /* add q[jz+1] to q[jz+k] */ | ||||||
|  | 				f[jx+i] = (double)ipio2[jv+i]; | ||||||
|  | 				for (j=0,fw=0.0; j<=jx; j++) | ||||||
|  | 					fw += x[j]*f[jx+i-j]; | ||||||
|  | 				q[i] = fw; | ||||||
|  | 			} | ||||||
|  | 			jz += k; | ||||||
|  | 			goto recompute; | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* chop off zero terms */ | ||||||
|  | 	if (z == 0.0) { | ||||||
|  | 		jz -= 1; | ||||||
|  | 		q0 -= 24; | ||||||
|  | 		while (iq[jz] == 0) { | ||||||
|  | 			jz--; | ||||||
|  | 			q0 -= 24; | ||||||
|  | 		} | ||||||
|  | 	} else { /* break z into 24-bit if necessary */ | ||||||
|  | 		z = scalbn(z,-q0); | ||||||
|  | 		if (z >= 0x1p24) { | ||||||
|  | 			fw = (double)(int32_t)(0x1p-24*z); | ||||||
|  | 			iq[jz] = (int32_t)(z - 0x1p24*fw); | ||||||
|  | 			jz += 1; | ||||||
|  | 			q0 += 24; | ||||||
|  | 			iq[jz] = (int32_t)fw; | ||||||
|  | 		} else | ||||||
|  | 			iq[jz] = (int32_t)z; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* convert integer "bit" chunk to floating-point value */ | ||||||
|  | 	fw = scalbn(1.0,q0); | ||||||
|  | 	for (i=jz; i>=0; i--) { | ||||||
|  | 		q[i] = fw*(double)iq[i]; | ||||||
|  | 		fw *= 0x1p-24; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* compute PIo2[0,...,jp]*q[jz,...,0] */ | ||||||
|  | 	for(i=jz; i>=0; i--) { | ||||||
|  | 		for (fw=0.0,k=0; k<=jp && k<=jz-i; k++) | ||||||
|  | 			fw += PIo2[k]*q[i+k]; | ||||||
|  | 		fq[jz-i] = fw; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* compress fq[] into y[] */ | ||||||
|  | 	switch(prec) { | ||||||
|  | 	case 0: | ||||||
|  | 		fw = 0.0; | ||||||
|  | 		for (i=jz; i>=0; i--) | ||||||
|  | 			fw += fq[i]; | ||||||
|  | 		y[0] = ih==0 ? fw : -fw; | ||||||
|  | 		break; | ||||||
|  | 	case 1: | ||||||
|  | 	case 2: | ||||||
|  | 		fw = 0.0; | ||||||
|  | 		for (i=jz; i>=0; i--) | ||||||
|  | 			fw += fq[i]; | ||||||
|  | 		// TODO: drop excess precision here once double_t is used
 | ||||||
|  | 		fw = (double)fw; | ||||||
|  | 		y[0] = ih==0 ? fw : -fw; | ||||||
|  | 		fw = fq[0]-fw; | ||||||
|  | 		for (i=1; i<=jz; i++) | ||||||
|  | 			fw += fq[i]; | ||||||
|  | 		y[1] = ih==0 ? fw : -fw; | ||||||
|  | 		break; | ||||||
|  | 	case 3:  /* painful */ | ||||||
|  | 		for (i=jz; i>0; i--) { | ||||||
|  | 			fw      = fq[i-1]+fq[i]; | ||||||
|  | 			fq[i]  += fq[i-1]-fw; | ||||||
|  | 			fq[i-1] = fw; | ||||||
|  | 		} | ||||||
|  | 		for (i=jz; i>1; i--) { | ||||||
|  | 			fw      = fq[i-1]+fq[i]; | ||||||
|  | 			fq[i]  += fq[i-1]-fw; | ||||||
|  | 			fq[i-1] = fw; | ||||||
|  | 		} | ||||||
|  | 		for (fw=0.0,i=jz; i>=2; i--) | ||||||
|  | 			fw += fq[i]; | ||||||
|  | 		if (ih==0) { | ||||||
|  | 			y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw; | ||||||
|  | 		} else { | ||||||
|  | 			y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 	return n&7; | ||||||
|  | } | ||||||
|  | @ -0,0 +1,86 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */ | ||||||
|  | /*
 | ||||||
|  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | ||||||
|  |  * Debugged and optimized by Bruce D. Evans. | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | /* __rem_pio2f(x,y)
 | ||||||
|  |  * | ||||||
|  |  * return the remainder of x rem pi/2 in *y | ||||||
|  |  * use double precision for everything except passing x | ||||||
|  |  * use __rem_pio2_large() for large x | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | #if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1 | ||||||
|  | #define EPS DBL_EPSILON | ||||||
|  | #elif FLT_EVAL_METHOD==2 | ||||||
|  | #define EPS LDBL_EPSILON | ||||||
|  | #endif | ||||||
|  | 
 | ||||||
|  | /*
 | ||||||
|  |  * invpio2:  53 bits of 2/pi | ||||||
|  |  * pio2_1:   first 25 bits of pi/2 | ||||||
|  |  * pio2_1t:  pi/2 - pio2_1 | ||||||
|  |  */ | ||||||
|  | static const double | ||||||
|  | toint   = 1.5/EPS, | ||||||
|  | pio4    = 0x1.921fb6p-1, | ||||||
|  | invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ | ||||||
|  | pio2_1  = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */ | ||||||
|  | pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */ | ||||||
|  | 
 | ||||||
|  | int __rem_pio2f(float x, double *y) | ||||||
|  | { | ||||||
|  | 	union {float f; uint32_t i;} u = {x}; | ||||||
|  | 	double tx[1],ty[1]; | ||||||
|  | 	double_t fn; | ||||||
|  | 	uint32_t ix; | ||||||
|  | 	int n, sign, e0; | ||||||
|  | 
 | ||||||
|  | 	ix = u.i & 0x7fffffff; | ||||||
|  | 	/* 25+53 bit pi is good enough for medium size */ | ||||||
|  | 	if (ix < 0x4dc90fdb) {  /* |x| ~< 2^28*(pi/2), medium size */ | ||||||
|  | 		/* Use a specialized rint() to get fn. */ | ||||||
|  | 		fn = (double_t)x*invpio2 + toint - toint; | ||||||
|  | 		n  = (int32_t)fn; | ||||||
|  | 		*y = x - fn*pio2_1 - fn*pio2_1t; | ||||||
|  | 		/* Matters with directed rounding. */ | ||||||
|  | 		if (predict_false(*y < -pio4)) { | ||||||
|  | 			n--; | ||||||
|  | 			fn--; | ||||||
|  | 			*y = x - fn*pio2_1 - fn*pio2_1t; | ||||||
|  | 		} else if (predict_false(*y > pio4)) { | ||||||
|  | 			n++; | ||||||
|  | 			fn++; | ||||||
|  | 			*y = x - fn*pio2_1 - fn*pio2_1t; | ||||||
|  | 		} | ||||||
|  | 		return n; | ||||||
|  | 	} | ||||||
|  | 	if(ix>=0x7f800000) {  /* x is inf or NaN */ | ||||||
|  | 		*y = x-x; | ||||||
|  | 		return 0; | ||||||
|  | 	} | ||||||
|  | 	/* scale x into [2^23, 2^24-1] */ | ||||||
|  | 	sign = u.i>>31; | ||||||
|  | 	e0 = (ix>>23) - (0x7f+23);  /* e0 = ilogb(|x|)-23, positive */ | ||||||
|  | 	u.i = ix - (e0<<23); | ||||||
|  | 	tx[0] = u.f; | ||||||
|  | 	n  =  __rem_pio2_large(tx,ty,e0,1,0); | ||||||
|  | 	if (sign) { | ||||||
|  | 		*y = -ty[0]; | ||||||
|  | 		return -n; | ||||||
|  | 	} | ||||||
|  | 	*y = ty[0]; | ||||||
|  | 	return n; | ||||||
|  | } | ||||||
|  | @ -0,0 +1,64 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunSoft, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | /* __sin( x, y, iy)
 | ||||||
|  |  * kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 | ||||||
|  |  * Input x is assumed to be bounded by ~pi/4 in magnitude. | ||||||
|  |  * Input y is the tail of x. | ||||||
|  |  * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). | ||||||
|  |  * | ||||||
|  |  * Algorithm | ||||||
|  |  *      1. Since sin(-x) = -sin(x), we need only to consider positive x. | ||||||
|  |  *      2. Callers must return sin(-0) = -0 without calling here since our | ||||||
|  |  *         odd polynomial is not evaluated in a way that preserves -0. | ||||||
|  |  *         Callers may do the optimization sin(x) ~ x for tiny x. | ||||||
|  |  *      3. sin(x) is approximated by a polynomial of degree 13 on | ||||||
|  |  *         [0,pi/4] | ||||||
|  |  *                               3            13 | ||||||
|  |  *              sin(x) ~ x + S1*x + ... + S6*x | ||||||
|  |  *         where | ||||||
|  |  * | ||||||
|  |  *      |sin(x)         2     4     6     8     10     12  |     -58 | ||||||
|  |  *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2 | ||||||
|  |  *      |  x                                               | | ||||||
|  |  * | ||||||
|  |  *      4. sin(x+y) = sin(x) + sin'(x')*y | ||||||
|  |  *                  ~ sin(x) + (1-x*x/2)*y | ||||||
|  |  *         For better accuracy, let | ||||||
|  |  *                   3      2      2      2      2 | ||||||
|  |  *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) | ||||||
|  |  *         then                   3    2 | ||||||
|  |  *              sin(x) = x + (S1*x + (x *(r-y/2)+y)) | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | static const double | ||||||
|  | S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ | ||||||
|  | S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ | ||||||
|  | S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ | ||||||
|  | S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ | ||||||
|  | S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ | ||||||
|  | S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ | ||||||
|  | 
 | ||||||
|  | double __sin(double x, double y, int iy) | ||||||
|  | { | ||||||
|  | 	double_t z,r,v,w; | ||||||
|  | 
 | ||||||
|  | 	z = x*x; | ||||||
|  | 	w = z*z; | ||||||
|  | 	r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6); | ||||||
|  | 	v = z*x; | ||||||
|  | 	if (iy == 0) | ||||||
|  | 		return x + v*(S1 + z*r); | ||||||
|  | 	else | ||||||
|  | 		return x - ((z*(0.5*y - v*r) - y) - v*S1); | ||||||
|  | } | ||||||
|  | @ -0,0 +1,36 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */ | ||||||
|  | /*
 | ||||||
|  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | ||||||
|  |  * Optimized by Bruce D. Evans. | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | /* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */ | ||||||
|  | static const double | ||||||
|  | S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */ | ||||||
|  | S2 =  0x111110896efbb2.0p-59, /*  0.0083333293858894631756 */ | ||||||
|  | S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */ | ||||||
|  | S4 =  0x16cd878c3b46a7.0p-71; /*  0.0000027183114939898219064 */ | ||||||
|  | 
 | ||||||
|  | float __sindf(double x) | ||||||
|  | { | ||||||
|  | 	double_t r, s, w, z; | ||||||
|  | 
 | ||||||
|  | 	/* Try to optimize for parallel evaluation as in __tandf.c. */ | ||||||
|  | 	z = x*x; | ||||||
|  | 	w = z*z; | ||||||
|  | 	r = S3 + z*S4; | ||||||
|  | 	s = z*x; | ||||||
|  | 	return (x + s*(S1 + z*S2)) + s*w*r; | ||||||
|  | } | ||||||
|  | @ -0,0 +1,77 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | /* cos(x)
 | ||||||
|  |  * Return cosine function of x. | ||||||
|  |  * | ||||||
|  |  * kernel function: | ||||||
|  |  *      __sin           ... sine function on [-pi/4,pi/4] | ||||||
|  |  *      __cos           ... cosine function on [-pi/4,pi/4] | ||||||
|  |  *      __rem_pio2      ... argument reduction routine | ||||||
|  |  * | ||||||
|  |  * Method. | ||||||
|  |  *      Let S,C and T denote the sin, cos and tan respectively on | ||||||
|  |  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 | ||||||
|  |  *      in [-pi/4 , +pi/4], and let n = k mod 4. | ||||||
|  |  *      We have | ||||||
|  |  * | ||||||
|  |  *          n        sin(x)      cos(x)        tan(x) | ||||||
|  |  *     ---------------------------------------------------------- | ||||||
|  |  *          0          S           C             T | ||||||
|  |  *          1          C          -S            -1/T | ||||||
|  |  *          2         -S          -C             T | ||||||
|  |  *          3         -C           S            -1/T | ||||||
|  |  *     ---------------------------------------------------------- | ||||||
|  |  * | ||||||
|  |  * Special cases: | ||||||
|  |  *      Let trig be any of sin, cos, or tan. | ||||||
|  |  *      trig(+-INF)  is NaN, with signals; | ||||||
|  |  *      trig(NaN)    is that NaN; | ||||||
|  |  * | ||||||
|  |  * Accuracy: | ||||||
|  |  *      TRIG(x) returns trig(x) nearly rounded | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | double cos(double x) | ||||||
|  | { | ||||||
|  | 	double y[2]; | ||||||
|  | 	uint32_t ix; | ||||||
|  | 	unsigned n; | ||||||
|  | 
 | ||||||
|  | 	GET_HIGH_WORD(ix, x); | ||||||
|  | 	ix &= 0x7fffffff; | ||||||
|  | 
 | ||||||
|  | 	/* |x| ~< pi/4 */ | ||||||
|  | 	if (ix <= 0x3fe921fb) { | ||||||
|  | 		if (ix < 0x3e46a09e) {  /* |x| < 2**-27 * sqrt(2) */ | ||||||
|  | 			/* raise inexact if x!=0 */ | ||||||
|  | 			FORCE_EVAL(x + 0x1p120f); | ||||||
|  | 			return 1.0; | ||||||
|  | 		} | ||||||
|  | 		return __cos(x, 0); | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* cos(Inf or NaN) is NaN */ | ||||||
|  | 	if (ix >= 0x7ff00000) | ||||||
|  | 		return x-x; | ||||||
|  | 
 | ||||||
|  | 	/* argument reduction */ | ||||||
|  | 	n = __rem_pio2(x, y); | ||||||
|  | 	switch (n&3) { | ||||||
|  | 	case 0: return  __cos(y[0], y[1]); | ||||||
|  | 	case 1: return -__sin(y[0], y[1], 1); | ||||||
|  | 	case 2: return -__cos(y[0], y[1]); | ||||||
|  | 	default: | ||||||
|  | 		return  __sin(y[0], y[1], 1); | ||||||
|  | 	} | ||||||
|  | } | ||||||
|  | @ -0,0 +1,78 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */ | ||||||
|  | /*
 | ||||||
|  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | ||||||
|  |  * Optimized by Bruce D. Evans. | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | /* Small multiples of pi/2 rounded to double precision. */ | ||||||
|  | static const double | ||||||
|  | c1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */ | ||||||
|  | c2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */ | ||||||
|  | c3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */ | ||||||
|  | c4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */ | ||||||
|  | 
 | ||||||
|  | float cosf(float x) | ||||||
|  | { | ||||||
|  | 	double y; | ||||||
|  | 	uint32_t ix; | ||||||
|  | 	unsigned n, sign; | ||||||
|  | 
 | ||||||
|  | 	GET_FLOAT_WORD(ix, x); | ||||||
|  | 	sign = ix >> 31; | ||||||
|  | 	ix &= 0x7fffffff; | ||||||
|  | 
 | ||||||
|  | 	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */ | ||||||
|  | 		if (ix < 0x39800000) {  /* |x| < 2**-12 */ | ||||||
|  | 			/* raise inexact if x != 0 */ | ||||||
|  | 			FORCE_EVAL(x + 0x1p120f); | ||||||
|  | 			return 1.0f; | ||||||
|  | 		} | ||||||
|  | 		return __cosdf(x); | ||||||
|  | 	} | ||||||
|  | 	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */ | ||||||
|  | 		if (ix > 0x4016cbe3)  /* |x|  ~> 3*pi/4 */ | ||||||
|  | 			return -__cosdf(sign ? x+c2pio2 : x-c2pio2); | ||||||
|  | 		else { | ||||||
|  | 			if (sign) | ||||||
|  | 				return __sindf(x + c1pio2); | ||||||
|  | 			else | ||||||
|  | 				return __sindf(c1pio2 - x); | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */ | ||||||
|  | 		if (ix > 0x40afeddf)  /* |x| ~> 7*pi/4 */ | ||||||
|  | 			return __cosdf(sign ? x+c4pio2 : x-c4pio2); | ||||||
|  | 		else { | ||||||
|  | 			if (sign) | ||||||
|  | 				return __sindf(-x - c3pio2); | ||||||
|  | 			else | ||||||
|  | 				return __sindf(x - c3pio2); | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* cos(Inf or NaN) is NaN */ | ||||||
|  | 	if (ix >= 0x7f800000) | ||||||
|  | 		return x-x; | ||||||
|  | 
 | ||||||
|  | 	/* general argument reduction needed */ | ||||||
|  | 	n = __rem_pio2f(x,&y); | ||||||
|  | 	switch (n&3) { | ||||||
|  | 	case 0: return  __cosdf(y); | ||||||
|  | 	case 1: return  __sindf(-y); | ||||||
|  | 	case 2: return -__cosdf(y); | ||||||
|  | 	default: | ||||||
|  | 		return  __sindf(y); | ||||||
|  | 	} | ||||||
|  | } | ||||||
|  | @ -108,6 +108,27 @@ do {                                              \ | ||||||
| #define SET_LOW_WORD(d,lo)                        \ | #define SET_LOW_WORD(d,lo)                        \ | ||||||
|   INSERT_WORDS(d, asuint64(d)>>32, lo) |   INSERT_WORDS(d, asuint64(d)>>32, lo) | ||||||
| 
 | 
 | ||||||
|  | #define GET_FLOAT_WORD(w,d)                       \ | ||||||
|  | do {                                              \ | ||||||
|  |   (w) = asuint(d);                                \ | ||||||
|  | } while (0) | ||||||
|  | 
 | ||||||
|  | #define SET_FLOAT_WORD(d,w)                       \ | ||||||
|  | do {                                              \ | ||||||
|  |   (d) = asfloat(w);                               \ | ||||||
|  | } while (0) | ||||||
|  | 
 | ||||||
|  | int    __rem_pio2_large(double*,double*,int,int,int); | ||||||
|  | 
 | ||||||
|  | int    __rem_pio2(double,double*); | ||||||
|  | double __sin(double,double,int); | ||||||
|  | double __cos(double,double); | ||||||
|  | 
 | ||||||
|  | int    __rem_pio2f(float,double*); | ||||||
|  | float  __sindf(double); | ||||||
|  | float  __cosdf(double); | ||||||
|  | 
 | ||||||
|  | float __math_invalidf(float); | ||||||
| double __math_xflow(uint32_t, double); | double __math_xflow(uint32_t, double); | ||||||
| double __math_uflow(uint32_t); | double __math_uflow(uint32_t); | ||||||
| double __math_oflow(uint32_t); | double __math_oflow(uint32_t); | ||||||
|  |  | ||||||
|  | @ -0,0 +1,33 @@ | ||||||
|  | #include <math.h> | ||||||
|  | #include <stdint.h> | ||||||
|  | 
 | ||||||
|  | double scalbn(double x, int n) | ||||||
|  | { | ||||||
|  | 	union {double f; uint64_t i;} u; | ||||||
|  | 	double_t y = x; | ||||||
|  | 
 | ||||||
|  | 	if (n > 1023) { | ||||||
|  | 		y *= 0x1p1023; | ||||||
|  | 		n -= 1023; | ||||||
|  | 		if (n > 1023) { | ||||||
|  | 			y *= 0x1p1023; | ||||||
|  | 			n -= 1023; | ||||||
|  | 			if (n > 1023) | ||||||
|  | 				n = 1023; | ||||||
|  | 		} | ||||||
|  | 	} else if (n < -1022) { | ||||||
|  | 		/* make sure final n < -53 to avoid double
 | ||||||
|  | 		   rounding in the subnormal range */ | ||||||
|  | 		y *= 0x1p-1022 * 0x1p53; | ||||||
|  | 		n += 1022 - 53; | ||||||
|  | 		if (n < -1022) { | ||||||
|  | 			y *= 0x1p-1022 * 0x1p53; | ||||||
|  | 			n += 1022 - 53; | ||||||
|  | 			if (n < -1022) | ||||||
|  | 				n = -1022; | ||||||
|  | 		} | ||||||
|  | 	} | ||||||
|  | 	u.i = (uint64_t)(0x3ff+n)<<52; | ||||||
|  | 	x = y * u.f; | ||||||
|  | 	return x; | ||||||
|  | } | ||||||
|  | @ -0,0 +1,78 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | /* sin(x)
 | ||||||
|  |  * Return sine function of x. | ||||||
|  |  * | ||||||
|  |  * kernel function: | ||||||
|  |  *      __sin            ... sine function on [-pi/4,pi/4] | ||||||
|  |  *      __cos            ... cose function on [-pi/4,pi/4] | ||||||
|  |  *      __rem_pio2       ... argument reduction routine | ||||||
|  |  * | ||||||
|  |  * Method. | ||||||
|  |  *      Let S,C and T denote the sin, cos and tan respectively on | ||||||
|  |  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 | ||||||
|  |  *      in [-pi/4 , +pi/4], and let n = k mod 4. | ||||||
|  |  *      We have | ||||||
|  |  * | ||||||
|  |  *          n        sin(x)      cos(x)        tan(x) | ||||||
|  |  *     ---------------------------------------------------------- | ||||||
|  |  *          0          S           C             T | ||||||
|  |  *          1          C          -S            -1/T | ||||||
|  |  *          2         -S          -C             T | ||||||
|  |  *          3         -C           S            -1/T | ||||||
|  |  *     ---------------------------------------------------------- | ||||||
|  |  * | ||||||
|  |  * Special cases: | ||||||
|  |  *      Let trig be any of sin, cos, or tan. | ||||||
|  |  *      trig(+-INF)  is NaN, with signals; | ||||||
|  |  *      trig(NaN)    is that NaN; | ||||||
|  |  * | ||||||
|  |  * Accuracy: | ||||||
|  |  *      TRIG(x) returns trig(x) nearly rounded | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | double sin(double x) | ||||||
|  | { | ||||||
|  | 	double y[2]; | ||||||
|  | 	uint32_t ix; | ||||||
|  | 	unsigned n; | ||||||
|  | 
 | ||||||
|  | 	/* High word of x. */ | ||||||
|  | 	GET_HIGH_WORD(ix, x); | ||||||
|  | 	ix &= 0x7fffffff; | ||||||
|  | 
 | ||||||
|  | 	/* |x| ~< pi/4 */ | ||||||
|  | 	if (ix <= 0x3fe921fb) { | ||||||
|  | 		if (ix < 0x3e500000) {  /* |x| < 2**-26 */ | ||||||
|  | 			/* raise inexact if x != 0 and underflow if subnormal*/ | ||||||
|  | 			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f); | ||||||
|  | 			return x; | ||||||
|  | 		} | ||||||
|  | 		return __sin(x, 0.0, 0); | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* sin(Inf or NaN) is NaN */ | ||||||
|  | 	if (ix >= 0x7ff00000) | ||||||
|  | 		return x - x; | ||||||
|  | 
 | ||||||
|  | 	/* argument reduction needed */ | ||||||
|  | 	n = __rem_pio2(x, y); | ||||||
|  | 	switch (n&3) { | ||||||
|  | 	case 0: return  __sin(y[0], y[1], 1); | ||||||
|  | 	case 1: return  __cos(y[0], y[1]); | ||||||
|  | 	case 2: return -__sin(y[0], y[1], 1); | ||||||
|  | 	default: | ||||||
|  | 		return -__cos(y[0], y[1]); | ||||||
|  | 	} | ||||||
|  | } | ||||||
|  | @ -0,0 +1,76 @@ | ||||||
|  | /* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */ | ||||||
|  | /*
 | ||||||
|  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | ||||||
|  |  * Optimized by Bruce D. Evans. | ||||||
|  |  */ | ||||||
|  | /*
 | ||||||
|  |  * ==================================================== | ||||||
|  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||||
|  |  * | ||||||
|  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||||
|  |  * Permission to use, copy, modify, and distribute this | ||||||
|  |  * software is freely granted, provided that this notice | ||||||
|  |  * is preserved. | ||||||
|  |  * ==================================================== | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "libm.h" | ||||||
|  | 
 | ||||||
|  | /* Small multiples of pi/2 rounded to double precision. */ | ||||||
|  | static const double | ||||||
|  | s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */ | ||||||
|  | s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */ | ||||||
|  | s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */ | ||||||
|  | s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */ | ||||||
|  | 
 | ||||||
|  | float sinf(float x) | ||||||
|  | { | ||||||
|  | 	double y; | ||||||
|  | 	uint32_t ix; | ||||||
|  | 	int n, sign; | ||||||
|  | 
 | ||||||
|  | 	GET_FLOAT_WORD(ix, x); | ||||||
|  | 	sign = ix >> 31; | ||||||
|  | 	ix &= 0x7fffffff; | ||||||
|  | 
 | ||||||
|  | 	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */ | ||||||
|  | 		if (ix < 0x39800000) {  /* |x| < 2**-12 */ | ||||||
|  | 			/* raise inexact if x!=0 and underflow if subnormal */ | ||||||
|  | 			FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f); | ||||||
|  | 			return x; | ||||||
|  | 		} | ||||||
|  | 		return __sindf(x); | ||||||
|  | 	} | ||||||
|  | 	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */ | ||||||
|  | 		if (ix <= 0x4016cbe3) {  /* |x| ~<= 3pi/4 */ | ||||||
|  | 			if (sign) | ||||||
|  | 				return -__cosdf(x + s1pio2); | ||||||
|  | 			else | ||||||
|  | 				return __cosdf(x - s1pio2); | ||||||
|  | 		} | ||||||
|  | 		return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2)); | ||||||
|  | 	} | ||||||
|  | 	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */ | ||||||
|  | 		if (ix <= 0x40afeddf) {  /* |x| ~<= 7*pi/4 */ | ||||||
|  | 			if (sign) | ||||||
|  | 				return __cosdf(x + s3pio2); | ||||||
|  | 			else | ||||||
|  | 				return -__cosdf(x - s3pio2); | ||||||
|  | 		} | ||||||
|  | 		return __sindf(sign ? x + s4pio2 : x - s4pio2); | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* sin(Inf or NaN) is NaN */ | ||||||
|  | 	if (ix >= 0x7f800000) | ||||||
|  | 		return x - x; | ||||||
|  | 
 | ||||||
|  | 	/* general argument reduction needed */ | ||||||
|  | 	n = __rem_pio2f(x, &y); | ||||||
|  | 	switch (n&3) { | ||||||
|  | 	case 0: return  __sindf(y); | ||||||
|  | 	case 1: return  __cosdf(y); | ||||||
|  | 	case 2: return  __sindf(-y); | ||||||
|  | 	default: | ||||||
|  | 		return -__cosdf(y); | ||||||
|  | 	} | ||||||
|  | } | ||||||
|  | @ -0,0 +1,83 @@ | ||||||
|  | #include <stdint.h> | ||||||
|  | #include <math.h> | ||||||
|  | #include "libm.h" | ||||||
|  | #include "sqrt_data.h" | ||||||
|  | 
 | ||||||
|  | #define FENV_SUPPORT 1 | ||||||
|  | 
 | ||||||
|  | static inline uint32_t mul32(uint32_t a, uint32_t b) | ||||||
|  | { | ||||||
|  | 	return (uint64_t)a*b >> 32; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | /* see sqrt.c for more detailed comments.  */ | ||||||
|  | 
 | ||||||
|  | float sqrtf(float x) | ||||||
|  | { | ||||||
|  | 	uint32_t ix, m, m1, m0, even, ey; | ||||||
|  | 
 | ||||||
|  | 	ix = asuint(x); | ||||||
|  | 	if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { | ||||||
|  | 		/* x < 0x1p-126 or inf or nan.  */ | ||||||
|  | 		if (ix * 2 == 0) | ||||||
|  | 			return x; | ||||||
|  | 		if (ix == 0x7f800000) | ||||||
|  | 			return x; | ||||||
|  | 		if (ix > 0x7f800000) | ||||||
|  | 			return __math_invalidf(x); | ||||||
|  | 		/* x is subnormal, normalize it.  */ | ||||||
|  | 		ix = asuint(x * 0x1p23f); | ||||||
|  | 		ix -= 23 << 23; | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/* x = 4^e m; with int e and m in [1, 4).  */ | ||||||
|  | 	even = ix & 0x00800000; | ||||||
|  | 	m1 = (ix << 8) | 0x80000000; | ||||||
|  | 	m0 = (ix << 7) & 0x7fffffff; | ||||||
|  | 	m = even ? m0 : m1; | ||||||
|  | 
 | ||||||
|  | 	/* 2^e is the exponent part of the return value.  */ | ||||||
|  | 	ey = ix >> 1; | ||||||
|  | 	ey += 0x3f800000 >> 1; | ||||||
|  | 	ey &= 0x7f800000; | ||||||
|  | 
 | ||||||
|  | 	/* compute r ~ 1/sqrt(m), s ~ sqrt(m) with 2 goldschmidt iterations.  */ | ||||||
|  | 	static const uint32_t three = 0xc0000000; | ||||||
|  | 	uint32_t r, s, d, u, i; | ||||||
|  | 	i = (ix >> 17) % 128; | ||||||
|  | 	r = (uint32_t)__rsqrt_tab[i] << 16; | ||||||
|  | 	/* |r*sqrt(m) - 1| < 0x1p-8 */ | ||||||
|  | 	s = mul32(m, r); | ||||||
|  | 	/* |s/sqrt(m) - 1| < 0x1p-8 */ | ||||||
|  | 	d = mul32(s, r); | ||||||
|  | 	u = three - d; | ||||||
|  | 	r = mul32(r, u) << 1; | ||||||
|  | 	/* |r*sqrt(m) - 1| < 0x1.7bp-16 */ | ||||||
|  | 	s = mul32(s, u) << 1; | ||||||
|  | 	/* |s/sqrt(m) - 1| < 0x1.7bp-16 */ | ||||||
|  | 	d = mul32(s, r); | ||||||
|  | 	u = three - d; | ||||||
|  | 	s = mul32(s, u); | ||||||
|  | 	/* -0x1.03p-28 < s/sqrt(m) - 1 < 0x1.fp-31 */ | ||||||
|  | 	s = (s - 1)>>6; | ||||||
|  | 	/* s < sqrt(m) < s + 0x1.08p-23 */ | ||||||
|  | 
 | ||||||
|  | 	/* compute nearest rounded result.  */ | ||||||
|  | 	uint32_t d0, d1, d2; | ||||||
|  | 	float y, t; | ||||||
|  | 	d0 = (m << 16) - s*s; | ||||||
|  | 	d1 = s - d0; | ||||||
|  | 	d2 = d1 + s + 1; | ||||||
|  | 	s += d1 >> 31; | ||||||
|  | 	s &= 0x007fffff; | ||||||
|  | 	s |= ey; | ||||||
|  | 	y = asfloat(s); | ||||||
|  | 	if (FENV_SUPPORT) { | ||||||
|  | 		/* handle rounding and inexact exception. */ | ||||||
|  | 		uint32_t tiny = predict_false(d2==0) ? 0 : 0x01000000; | ||||||
|  | 		tiny |= (d1^d2) & 0x80000000; | ||||||
|  | 		t = asfloat(tiny); | ||||||
|  | 		y = eval_as_float(y + t); | ||||||
|  | 	} | ||||||
|  | 	return y; | ||||||
|  | } | ||||||
							
								
								
									
										2
									
								
								milepost
								
								
								
								
							
							
								
								
								
								
								
								
							
						
						
									
										2
									
								
								milepost
								
								
								
								
							|  | @ -1 +1 @@ | ||||||
| Subproject commit 36c75a55dd1d843b29691293410344a9f48a9201 | Subproject commit 59fdc27ac6dd84af4c9ed505213dea0fec641c32 | ||||||
|  | @ -1 +1,3 @@ | ||||||
| Pong | Pong | ||||||
|  | profile.dtrace | ||||||
|  | profile.spall | ||||||
|  |  | ||||||
|  | @ -11,16 +11,22 @@ else | ||||||
|   CLANG=clang |   CLANG=clang | ||||||
| fi | fi | ||||||
| 
 | 
 | ||||||
|  | STDLIB_DIR=../../cstdlib | ||||||
|  | ORCA_SDK_DIR=../../sdk | ||||||
|  | MILEPOST_DIR=../../milepost | ||||||
|  | 
 | ||||||
| wasmFlags="--target=wasm32 \ | wasmFlags="--target=wasm32 \ | ||||||
|        --no-standard-libraries \ |   --no-standard-libraries \ | ||||||
|        -fno-builtin \ |   -fno-builtin \ | ||||||
|        -Wl,--no-entry \ |   -Wl,--no-entry \ | ||||||
|        -Wl,--export-dynamic \ |   -Wl,--export-dynamic \ | ||||||
|        -g \ |   -g \ | ||||||
|        -O2 \ |   -O2 \ | ||||||
|        -mbulk-memory \ |   -mbulk-memory \ | ||||||
|        -D__ORCA__ \ |   -D__ORCA__ \ | ||||||
| 	   -isystem ../../cstdlib/include -I ../../sdk -I../../milepost/ext -I ../../milepost -I ../../milepost/src -I ../../milepost/src/util -I ../../milepost/src/platform -I../.." |   -I $STDLIB_DIR/include \ | ||||||
|  |   -I $ORCA_SDK_DIR \ | ||||||
|  |   -I $MILEPOST_DIR/ext -I $MILEPOST_DIR -I $MILEPOST_DIR/src -I $MILEPOST_DIR/src/util -I $MILEPOST_DIR/src/platform" | ||||||
| 
 | 
 | ||||||
| $CLANG $wasmFlags -o ./module.wasm ../../sdk/orca.c ../../cstdlib/src/*.c src/main.c | $CLANG $wasmFlags -o ./module.wasm ../../sdk/orca.c ../../cstdlib/src/*.c src/main.c | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
										
											Binary file not shown.
										
									
								
							| Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 60 KiB | 
										
											Binary file not shown.
										
									
								
							| Before Width: | Height: | Size: 150 KiB After Width: | Height: | Size: 150 KiB | 
|  | @ -1,173 +1,172 @@ | ||||||
| /************************************************************//**
 | #include <keys.h> | ||||||
| * | #include <graphics.h> | ||||||
| *	@file: wasm_main.cpp | #include <math.h> | ||||||
| *	@author: Martin Fouilleul |  | ||||||
| *	@date: 14/08/2022 |  | ||||||
| *	@revision: |  | ||||||
| * |  | ||||||
| *****************************************************************/ |  | ||||||
| 
 | 
 | ||||||
| #include"keys.h" | #include <orca.h> | ||||||
| #include"graphics.h" |  | ||||||
| 
 | 
 | ||||||
| #include"orca.h" | #define NUM_BLOCKS_PER_ROW 7 | ||||||
|  | #define NUM_BLOCKS 42 // 7 * 6
 | ||||||
| 
 | 
 | ||||||
| #define M_PI 3.14159265358979323846 | #define BLOCKS_WIDTH 810.0f | ||||||
|  | #define BLOCK_HEIGHT 30.0f | ||||||
|  | #define BLOCKS_PADDING 15.0f | ||||||
|  | #define BLOCKS_BOTTOM 300.0f | ||||||
|  | const f32 BLOCK_WIDTH = (BLOCKS_WIDTH - ((NUM_BLOCKS_PER_ROW + 1) * BLOCKS_PADDING)) / NUM_BLOCKS_PER_ROW; | ||||||
| 
 | 
 | ||||||
| extern float cosf(float x); | #define PADDLE_MAX_LAUNCH_ANGLE 0.7f | ||||||
| extern float sinf(float x); |  | ||||||
| 
 | 
 | ||||||
| const mg_color paddleColor = {1, 0, 0, 1}; | const mg_color paddleColor = {1, 0, 0, 1}; | ||||||
| mp_rect paddle = {200, 40, 200, 40}; | mp_rect paddle = {300, 50, 200, 24}; | ||||||
| 
 | 
 | ||||||
| const mg_color ballColor = {1, 1, 0, 1}; | const mg_color ballColor = {1, 1, 0, 1}; | ||||||
| mp_rect ball = {200, 200, 60, 60}; | mp_rect ball = {200, 200, 20, 20}; | ||||||
| 
 | 
 | ||||||
| vec2 velocity = {10, 10}; | vec2 velocity = {5, 5}; | ||||||
|  | 
 | ||||||
|  | // This is upside down from how it will actually be drawn.
 | ||||||
|  | int blockHealth[NUM_BLOCKS] = { | ||||||
|  |     0, 1, 1, 1, 1, 1, 0, | ||||||
|  |     1, 1, 1, 1, 1, 1, 1, | ||||||
|  |     2, 2, 2, 2, 2, 2, 2, | ||||||
|  |     2, 2, 2, 2, 2, 2, 2, | ||||||
|  |     3, 3, 3, 3, 3, 3, 3, | ||||||
|  |     3, 3, 3, 3, 3, 3, 3, | ||||||
|  | }; | ||||||
| 
 | 
 | ||||||
| vec2 frameSize = {100, 100}; | vec2 frameSize = {100, 100}; | ||||||
| 
 | 
 | ||||||
| bool leftDown = false; | bool leftDown = false; | ||||||
| bool rightDown = false; | bool rightDown = false; | ||||||
| 
 | 
 | ||||||
| mg_canvas canvas; |  | ||||||
| mg_surface surface; | mg_surface surface; | ||||||
|  | mg_canvas canvas; | ||||||
|  | mg_image waterImage; | ||||||
| mg_image ballImage; | mg_image ballImage; | ||||||
| mg_image paddleImage; | mg_image paddleImage; | ||||||
| mg_font pongFont; | mg_font pongFont; | ||||||
| 
 | 
 | ||||||
|  | // TODO(ben): Why is this here? Why isn't it forward-declared by some header?
 | ||||||
| mg_surface mg_surface_main(void); | mg_surface mg_surface_main(void); | ||||||
| 
 | 
 | ||||||
|  | f32 lerp(f32 a, f32 b, f32 t); | ||||||
|  | mp_rect blockRect(int i); | ||||||
|  | int checkCollision(mp_rect block); | ||||||
|  | mg_mat2x3 flipY(mp_rect r); | ||||||
|  | mg_mat2x3 flipYAt(vec2 pos); | ||||||
|  | 
 | ||||||
|  | str8 loadFile(mem_arena* arena, str8 filename) { | ||||||
|  |     file_handle file = file_open(filename, FILE_ACCESS_READ, 0); | ||||||
|  |     if(file_last_error(file) != IO_OK) | ||||||
|  |     { | ||||||
|  |         log_error("Couldn't open file %s\n", str8_to_cstring(mem_scratch(), filename)); | ||||||
|  |     } | ||||||
|  |     u64 size = file_size(file); | ||||||
|  |     char* buffer = mem_arena_alloc(arena, size); | ||||||
|  |     file_read(file, size, buffer); | ||||||
|  |     file_close(file); | ||||||
|  |     return str8_from_buffer(size, buffer); | ||||||
|  | } | ||||||
|  | 
 | ||||||
| ORCA_EXPORT void OnInit(void) | ORCA_EXPORT void OnInit(void) | ||||||
| { | { | ||||||
| 	//TODO create surface for main window
 |     surface = mg_surface_main(); | ||||||
| 	surface = mg_surface_main(); |     canvas = mg_canvas_create(); | ||||||
| 	canvas = mg_canvas_create(); |  | ||||||
| 
 | 
 | ||||||
| 	log_info("try allocating\n"); |     waterImage = mg_image_create_from_data(surface, loadFile(mem_scratch(), STR8("/underwater.jpg")), false); | ||||||
|  |     ballImage = mg_image_create_from_data(surface, loadFile(mem_scratch(), STR8("/ball.png")), false); | ||||||
|  |     paddleImage = mg_image_create_from_data(surface, loadFile(mem_scratch(), STR8("/wall.png")), false); | ||||||
| 
 | 
 | ||||||
| 	char* foo = malloc(1024); |     if(mg_image_is_nil(waterImage)) | ||||||
| 	free(foo); |     { | ||||||
|  | 		log_error("coulnd't load ball image\n"); | ||||||
|  |     } | ||||||
|  |     if(mg_image_is_nil(ballImage)) | ||||||
|  |     { | ||||||
|  | 		log_error("coulnd't load ball image\n"); | ||||||
|  |     } | ||||||
|  |     if(mg_image_is_nil(paddleImage)) | ||||||
|  |     { | ||||||
|  | 		log_error("coulnd't load paddle image\n"); | ||||||
|  |     } | ||||||
| 
 | 
 | ||||||
| 	log_info("allocated and freed 1024 bytes\n"); |     str8 fontStr = loadFile(mem_scratch(), STR8("/Literata-SemiBoldItalic.ttf")); | ||||||
|  |     unicode_range ranges[5] = {UNICODE_RANGE_BASIC_LATIN, | ||||||
|  |                                UNICODE_RANGE_C1_CONTROLS_AND_LATIN_1_SUPPLEMENT, | ||||||
|  |                                UNICODE_RANGE_LATIN_EXTENDED_A, | ||||||
|  |                                UNICODE_RANGE_LATIN_EXTENDED_B, | ||||||
|  |                                UNICODE_RANGE_SPECIALS}; | ||||||
|  |     // NOTE(ben): Weird that images are "create from data" but fonts are "create from memory"
 | ||||||
|  |     // TODO: Decide whether we're using strings or explicit pointer + length
 | ||||||
|  |     pongFont = mg_font_create_from_memory(fontStr.len, (byte*)fontStr.ptr, 5, ranges); | ||||||
| 
 | 
 | ||||||
| 	//NOTE: load ball texture
 |     mem_arena_clear(mem_scratch()); | ||||||
| 	{ |  | ||||||
| 		file_handle file = file_open(STR8("/ball.png"), FILE_ACCESS_READ, 0); |  | ||||||
| 		if(file_last_error(file) != IO_OK) |  | ||||||
| 		{ |  | ||||||
| 			log_error("Couldn't open file ball.png\n"); |  | ||||||
| 		} |  | ||||||
| 		u64 size = file_size(file); |  | ||||||
| 		char* buffer = mem_arena_alloc(mem_scratch(), size); |  | ||||||
| 		file_read(file, size, buffer); |  | ||||||
| 		file_close(file); |  | ||||||
| 		ballImage = mg_image_create_from_data(surface, str8_from_buffer(size, buffer), false); |  | ||||||
| 	} |  | ||||||
| 
 |  | ||||||
| 	//NOTE: load paddle texture
 |  | ||||||
| 	{ |  | ||||||
| 		file_handle file = file_open(STR8("/wall.png"), FILE_ACCESS_READ, 0); |  | ||||||
| 		if(file_last_error(file) != IO_OK) |  | ||||||
| 		{ |  | ||||||
| 			log_error("Couldn't open file wall.png\n"); |  | ||||||
| 		} |  | ||||||
| 		u64 size = file_size(file); |  | ||||||
| 		char* buffer = mem_arena_alloc(mem_scratch(), size); |  | ||||||
| 		file_read(file, size, buffer); |  | ||||||
| 		file_close(file); |  | ||||||
| 		paddleImage = mg_image_create_from_data(surface, str8_from_buffer(size, buffer), false); |  | ||||||
| 	} |  | ||||||
| 
 |  | ||||||
| 	//NOTE: load paddle texture
 |  | ||||||
| 	{ |  | ||||||
| 		file_handle file = file_open(STR8("/Literata-SemiBoldItalic.ttf"), FILE_ACCESS_READ, 0); |  | ||||||
| 		if(file_last_error(file) != IO_OK) |  | ||||||
| 		{ |  | ||||||
| 			log_error("Couldn't open file Literata-SemiBoldItalic.ttf\n"); |  | ||||||
| 		} |  | ||||||
| 		u64 size = file_size(file); |  | ||||||
| 		char* buffer = mem_arena_alloc(mem_scratch(), size); |  | ||||||
| 		file_read(file, size, buffer); |  | ||||||
| 		file_close(file); |  | ||||||
| 		unicode_range ranges[5] = {UNICODE_RANGE_BASIC_LATIN, |  | ||||||
| 	                           UNICODE_RANGE_C1_CONTROLS_AND_LATIN_1_SUPPLEMENT, |  | ||||||
| 	                           UNICODE_RANGE_LATIN_EXTENDED_A, |  | ||||||
| 	                           UNICODE_RANGE_LATIN_EXTENDED_B, |  | ||||||
| 	                           UNICODE_RANGE_SPECIALS}; |  | ||||||
| 		// NOTE(ben): Weird that images are "create from data" but fonts are "create from memory"
 |  | ||||||
| 		// TODO: Decide whether we're using strings or explicit pointer + length
 |  | ||||||
| 		pongFont = mg_font_create_from_memory(size, (byte*)buffer, 5, ranges); |  | ||||||
| 	} |  | ||||||
| 
 |  | ||||||
| 	mem_arena_clear(mem_scratch()); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| ORCA_EXPORT void OnFrameResize(u32 width, u32 height) | ORCA_EXPORT void OnFrameResize(u32 width, u32 height) | ||||||
| { | { | ||||||
| 	log_info("frame resize %u, %u", width, height); |     log_info("frame resize %u, %u", width, height); | ||||||
| 	frameSize.x = width; |     frameSize.x = width; | ||||||
| 	frameSize.y = height; |     frameSize.y = height; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| ORCA_EXPORT void OnMouseDown(int button) | ORCA_EXPORT void OnMouseDown(int button) | ||||||
| { | { | ||||||
| 	log_info("mouse down!"); |     log_info("mouse down!"); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| ORCA_EXPORT void OnKeyDown(int key) | ORCA_EXPORT void OnKeyDown(int key) | ||||||
| { | { | ||||||
| 	if(key == KEY_SPACE) |     if(key == KEY_SPACE) | ||||||
| 	{ |     { | ||||||
| 		log_error("(this is just for testing errors)"); |         log_error("(this is just for testing errors)"); | ||||||
| 		return; |         return; | ||||||
| 	} |     } | ||||||
| 	if(key == KEY_ENTER) |     if(key == KEY_ENTER) | ||||||
| 	{ |     { | ||||||
| 		log_warning("(this is just for testing warning)"); |         log_warning("(this is just for testing warning)"); | ||||||
| 		return; |         return; | ||||||
| 	} |     } | ||||||
| 
 | 
 | ||||||
| 	log_info("key down: %i", key); |     log_info("key down: %i", key); | ||||||
| 	if(key == KEY_LEFT) |     if(key == KEY_LEFT) | ||||||
| 	{ |     { | ||||||
| 		leftDown = true; |         leftDown = true; | ||||||
| 	} |     } | ||||||
| 	if(key == KEY_RIGHT) |     if(key == KEY_RIGHT) | ||||||
| 	{ |     { | ||||||
| 		rightDown = true; |         rightDown = true; | ||||||
| 	} |     } | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| ORCA_EXPORT void OnKeyUp(int key) | ORCA_EXPORT void OnKeyUp(int key) | ||||||
| { | { | ||||||
| 	if(key == KEY_ENTER || key == KEY_SPACE) |     if(key == KEY_ENTER || key == KEY_SPACE) | ||||||
| 	{ |     { | ||||||
| 		return; |         return; | ||||||
| 	} |     } | ||||||
| 
 | 
 | ||||||
| 	log_info("key up: %i", key); |     log_info("key up: %i", key); | ||||||
| 	if(key == KEY_LEFT) |     if(key == KEY_LEFT) | ||||||
| 	{ |     { | ||||||
| 		leftDown = false; |         leftDown = false; | ||||||
| 	} |     } | ||||||
| 	if(key == KEY_RIGHT) |     if(key == KEY_RIGHT) | ||||||
| 	{ |     { | ||||||
| 		rightDown = false; |         rightDown = false; | ||||||
| 	} |     } | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| ORCA_EXPORT void OnFrameRefresh(void) | ORCA_EXPORT void OnFrameRefresh(void) | ||||||
| { | { | ||||||
| 	f32 aspect = frameSize.x/frameSize.y; |     f32 aspect = frameSize.x/frameSize.y; | ||||||
| 
 | 
 | ||||||
|     if(leftDown) |     if(leftDown) | ||||||
|     { |     { | ||||||
| 		paddle.x -= 10; |         paddle.x -= 10; | ||||||
|     } |     } | ||||||
|     else if(rightDown) |     else if(rightDown) | ||||||
|     { |     { | ||||||
| 		paddle.x += 10; |         paddle.x += 10; | ||||||
|     } |     } | ||||||
|     paddle.x = Clamp(paddle.x, 0, frameSize.x - paddle.w); |     paddle.x = Clamp(paddle.x, 0, frameSize.x - paddle.w); | ||||||
| 
 | 
 | ||||||
|  | @ -176,73 +175,291 @@ ORCA_EXPORT void OnFrameRefresh(void) | ||||||
|     ball.x = Clamp(ball.x, 0, frameSize.x - ball.w); |     ball.x = Clamp(ball.x, 0, frameSize.x - ball.w); | ||||||
|     ball.y = Clamp(ball.y, 0, frameSize.y - ball.h); |     ball.y = Clamp(ball.y, 0, frameSize.y - ball.h); | ||||||
| 
 | 
 | ||||||
|     if(ball.x + ball.w >= frameSize.x) |     if (ball.x + ball.w >= frameSize.x) { | ||||||
|     { |         velocity.x = -velocity.x; | ||||||
| 		velocity.x = -10; |  | ||||||
|     } |     } | ||||||
|     if(ball.x <= 0) |     if (ball.x <= 0) { | ||||||
|     { |         velocity.x = -velocity.x; | ||||||
| 		velocity.x = +10; |  | ||||||
|     } |     } | ||||||
|     if(ball.y + ball.h >= frameSize.y) |     if (ball.y + ball.h >= frameSize.y) { | ||||||
|     { |         velocity.y = -velocity.y; | ||||||
| 		velocity.y = -10; |  | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     if(ball.y <= paddle.y + paddle.h |     if ( | ||||||
|        && ball.x+ball.w >= paddle.x |         ball.y <= paddle.y + paddle.h | ||||||
|        && ball.x <= paddle.x + paddle.w |         && ball.x+ball.w >= paddle.x | ||||||
|        && velocity.y < 0) |         && ball.x <= paddle.x + paddle.w | ||||||
|     { |         && velocity.y < 0 | ||||||
| 		velocity.y *= -1; |     ) { | ||||||
| 		ball.y = paddle.y + paddle.h; |         f32 t = ((ball.x + ball.w/2) - paddle.x) / paddle.w; | ||||||
|  |         f32 launchAngle = lerp(-PADDLE_MAX_LAUNCH_ANGLE, PADDLE_MAX_LAUNCH_ANGLE, t); | ||||||
|  |         f32 speed = sqrtf(velocity.x*velocity.x + velocity.y*velocity.y); | ||||||
|  |         velocity = (vec2){ | ||||||
|  |             sinf(launchAngle) * speed, | ||||||
|  |             cosf(launchAngle) * speed, | ||||||
|  |         }; | ||||||
|  |         ball.y = paddle.y + paddle.h; | ||||||
| 
 | 
 | ||||||
| 		log_info("PONG!"); |         log_info("PONG!"); | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     if(ball.y <= 0) |     if (ball.y <= 0) { | ||||||
|  |         ball.x = frameSize.x/2. - ball.w; | ||||||
|  |         ball.y = frameSize.y/2. - ball.h; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     for (int i = 0; i < NUM_BLOCKS; i++) { | ||||||
|  |         if (blockHealth[i] <= 0) { | ||||||
|  |             continue; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         mp_rect r = blockRect(i); | ||||||
|  |         int result = checkCollision(r); | ||||||
|  |         if (result) { | ||||||
|  |             log_info("Collision! direction=%d", result); | ||||||
|  |             blockHealth[i] -= 1; | ||||||
|  | 
 | ||||||
|  |             f32 vx = velocity.x; | ||||||
|  |             f32 vy = velocity.y; | ||||||
|  | 
 | ||||||
|  |             switch (result) { | ||||||
|  |             case 1: | ||||||
|  |             case 5: | ||||||
|  |                 velocity.y = -vy; | ||||||
|  |                 break; | ||||||
|  |             case 3: | ||||||
|  |             case 7: | ||||||
|  |                 velocity.x = -vx; | ||||||
|  |                 break; | ||||||
|  |             case 2: | ||||||
|  |             case 6: | ||||||
|  |                 velocity.x = -vy; | ||||||
|  |                 velocity.y = -vx; | ||||||
|  |                 break; | ||||||
|  |             case 4: | ||||||
|  |             case 8: | ||||||
|  |                 velocity.x = vy; | ||||||
|  |                 velocity.y = vx; | ||||||
|  |                 break; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     mg_canvas_set_current(canvas); | ||||||
|  | 
 | ||||||
|  |     mg_set_color_rgba(10.0f/255.0f, 31.0f/255.0f, 72.0f/255.0f, 1); | ||||||
|  |     mg_clear(); | ||||||
|  | 
 | ||||||
|  |     mg_image_draw(waterImage, (mp_rect){0, 0, frameSize.x, frameSize.y}); | ||||||
|  | 
 | ||||||
|  |     mg_mat2x3 yUp = { | ||||||
|  |         1, 0, 0, | ||||||
|  |         0, -1, frameSize.y, | ||||||
|  |     }; | ||||||
|  | 
 | ||||||
|  |     mg_matrix_push(yUp); | ||||||
|     { |     { | ||||||
| 		ball.x = frameSize.x/2. - ball.w; |         for (int i = 0; i < NUM_BLOCKS; i++) { | ||||||
| 		ball.y = frameSize.y/2. - ball.h; |             if (blockHealth[i] <= 0) { | ||||||
| 	} |                 continue; | ||||||
|  |             } | ||||||
| 
 | 
 | ||||||
| 	mg_canvas_set_current(canvas); |             mp_rect r = blockRect(i); | ||||||
|  |             mg_set_color_rgba(0, 0, 0, 0.2); | ||||||
|  |             mg_rounded_rectangle_fill(r.x, r.y-2, r.w, r.h, 4); | ||||||
|  |             mg_set_color_rgba(0.9, 0.9, 0.9, 1); | ||||||
|  |             mg_rounded_rectangle_fill(r.x, r.y, r.w, r.h, 4); | ||||||
| 
 | 
 | ||||||
| 	mg_set_color_rgba(0, 1, 1, 1); |             int fontSize = 18; | ||||||
| 	mg_clear(); |             str8 text = str8_pushf(mem_scratch(), | ||||||
|  |                 "%d", blockHealth[i] | ||||||
|  |             ); | ||||||
|  |             mp_rect textRect = mg_text_bounding_box(pongFont, fontSize, text); | ||||||
| 
 | 
 | ||||||
| 	mg_mat2x3 transform = {1, 0, 0, |             vec2 textPos = { | ||||||
| 	                       0, -1, frameSize.y}; |                 r.x + r.w/2 - textRect.w/2, | ||||||
|  |                 r.y + 9, // TODO: mg_text_bounding_box is returning extremely wack results for height.
 | ||||||
|  |             }; | ||||||
| 
 | 
 | ||||||
| 	mg_matrix_push(transform); |             mg_set_color_rgba(0, 0, 0, 1); | ||||||
|  |             mg_set_font(pongFont); | ||||||
|  |             mg_set_font_size(18); | ||||||
|  |             mg_move_to(textPos.x, textPos.y); | ||||||
|  |             mg_matrix_push(flipYAt(textPos)); | ||||||
|  |             { | ||||||
|  |                 mg_text_outlines(text); | ||||||
|  |                 mg_fill(); | ||||||
|  |             } | ||||||
|  |             mg_matrix_pop(); | ||||||
|  |         } | ||||||
| 
 | 
 | ||||||
| 	mg_image_draw(paddleImage, paddle); |         mg_set_color_rgba(0.9, 0.9, 0.9, 1); | ||||||
| 	/*
 |         mg_rounded_rectangle_fill(paddle.x, paddle.y, paddle.w, paddle.h, 4); | ||||||
| 	mg_set_color(paddleColor); |  | ||||||
| 	mg_rectangle_fill(paddle.x, paddle.y, paddle.w, paddle.h); |  | ||||||
| 	*/ |  | ||||||
| 
 |  | ||||||
| 	mg_image_draw(ballImage, ball); |  | ||||||
| 	/*
 |  | ||||||
| 	mg_set_color(ballColor); |  | ||||||
| 	mg_circle_fill(ball.x+ball.w/2, ball.y + ball.w/2, ball.w/2.); |  | ||||||
| 	*/ |  | ||||||
| 
 | 
 | ||||||
|  |         mg_matrix_push(flipY(ball)); | ||||||
|  |         { | ||||||
|  |             mg_image_draw(ballImage, ball); | ||||||
|  |         } | ||||||
|  |         mg_matrix_pop(); | ||||||
|  |     } | ||||||
|     mg_matrix_pop(); |     mg_matrix_pop(); | ||||||
| 
 | 
 | ||||||
| 	mg_set_color_rgba(0, 0, 0, 1); |  | ||||||
| 	mg_set_font(pongFont); |  | ||||||
| 	mg_set_font_size(14); |  | ||||||
| 	mg_move_to(10, 20); |  | ||||||
| 
 |  | ||||||
| 	str8 text = str8_pushf(mem_scratch(), |  | ||||||
| 		"wahoo I'm did a text. ball is at x = %f, y = %f", |  | ||||||
| 		ball.x, ball.y |  | ||||||
| 	); |  | ||||||
| 	mg_text_outlines(text); |  | ||||||
| 	mg_fill(); |  | ||||||
| 
 |  | ||||||
|     mg_surface_prepare(surface); |     mg_surface_prepare(surface); | ||||||
|     mg_render(surface, canvas); |     mg_render(surface, canvas); | ||||||
|     mg_surface_present(surface); |     mg_surface_present(surface); | ||||||
| } | } | ||||||
|  | 
 | ||||||
|  | mp_rect blockRect(int i) { | ||||||
|  |     int row = i / NUM_BLOCKS_PER_ROW; | ||||||
|  |     int col = i % NUM_BLOCKS_PER_ROW; | ||||||
|  |     return (mp_rect){ | ||||||
|  |         BLOCKS_PADDING + (BLOCKS_PADDING + BLOCK_WIDTH) * col, | ||||||
|  |         BLOCKS_BOTTOM + (BLOCKS_PADDING + BLOCK_HEIGHT) * row, | ||||||
|  |         BLOCK_WIDTH, | ||||||
|  |         BLOCK_HEIGHT | ||||||
|  |     }; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | // Returns a cardinal direction 1-8 for the collision with the block, or zero
 | ||||||
|  | // if no collision. 1 is straight up and directions proceed clockwise.
 | ||||||
|  | int checkCollision(mp_rect block) { | ||||||
|  |     // Note that all the logic for this game has the origin in the bottom left.
 | ||||||
|  | 
 | ||||||
|  |     f32 ballx2 = ball.x + ball.w; | ||||||
|  |     f32 bally2 = ball.y + ball.h; | ||||||
|  |     f32 blockx2 = block.x + block.w; | ||||||
|  |     f32 blocky2 = block.y + block.h; | ||||||
|  | 
 | ||||||
|  |     if ( | ||||||
|  |         ballx2 < block.x | ||||||
|  |         || blockx2 < ball.x | ||||||
|  |         || bally2 < block.y | ||||||
|  |         || blocky2 < ball.y | ||||||
|  |     ) { | ||||||
|  |         // Ball is fully outside block
 | ||||||
|  |         return 0; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // if (
 | ||||||
|  |     //     (block.x <= ball.x && ballx2 <= blockx2)
 | ||||||
|  |     //     && (block.y <= ball.y && bally2 <= blocky2)
 | ||||||
|  |     // ) {
 | ||||||
|  |     //     // Ball is fully inside block; do not consider as a collision
 | ||||||
|  |     //     return 0;
 | ||||||
|  |     // }
 | ||||||
|  | 
 | ||||||
|  |     // If moving right, the ball can bounce off its top right corner, right
 | ||||||
|  |     // side, or bottom right corner. Corner bounces occur if the block's bottom
 | ||||||
|  |     // left corner is in the ball's top right quadrant, or if the block's top
 | ||||||
|  |     // left corner is in the ball's bottom left quadrant. Otherwise, an edge
 | ||||||
|  |     // bounce occurs if the block's left edge falls in either of the ball's
 | ||||||
|  |     // right quadrants.
 | ||||||
|  |     //
 | ||||||
|  |     // This logic generalizes to other directions.
 | ||||||
|  |     //
 | ||||||
|  |     // We assume significant tunneling can't happen.
 | ||||||
|  | 
 | ||||||
|  |     vec2 ballCenter = (vec2){ball.x + ball.w/2, ball.y + ball.h/2}; | ||||||
|  |     vec2 blockCenter = (vec2){block.x + block.w/2, block.y + block.h/2}; | ||||||
|  | 
 | ||||||
|  |     // Moving right
 | ||||||
|  |     if (velocity.x > 0) { | ||||||
|  |         // Ball's top right corner
 | ||||||
|  |         if ( | ||||||
|  |             ballCenter.x <= block.x && block.x <= ballx2 | ||||||
|  |             && ballCenter.y <= block.y && block.y <= bally2 | ||||||
|  |         ) { return 2; } | ||||||
|  | 
 | ||||||
|  |         // Ball's bottom right corner
 | ||||||
|  |         if ( | ||||||
|  |             ballCenter.x <= block.x && block.x <= ballx2 | ||||||
|  |             && ball.y <= blocky2 && blocky2 <= ballCenter.y | ||||||
|  |         ) { return 4; } | ||||||
|  | 
 | ||||||
|  |         // Ball's right edge
 | ||||||
|  |         if ( | ||||||
|  |             ballCenter.x <= block.x && block.x <= ballx2 | ||||||
|  |         ) { return 3; } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Moving up
 | ||||||
|  |     if (velocity.y > 0) { | ||||||
|  |         // Ball's top left corner
 | ||||||
|  |         if ( | ||||||
|  |             ball.x <= blockx2 && blockx2 <= ballCenter.x | ||||||
|  |             && ballCenter.y <= block.y && block.y <= bally2 | ||||||
|  |         ) { return 8; } | ||||||
|  | 
 | ||||||
|  |         // Ball's top right corner
 | ||||||
|  |         if ( | ||||||
|  |             ballCenter.x <= block.x && block.x <= ballx2 | ||||||
|  |             && ballCenter.y <= block.y && block.y <= bally2 | ||||||
|  |         ) { return 2; } | ||||||
|  | 
 | ||||||
|  |         // Ball's top edge
 | ||||||
|  |         if ( | ||||||
|  |             ballCenter.y <= block.y && block.y <= bally2 | ||||||
|  |         ) { return 1; } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Moving left
 | ||||||
|  |     if (velocity.x < 0) { | ||||||
|  |         // Ball's bottom left corner
 | ||||||
|  |         if ( | ||||||
|  |             ball.x <= blockx2 && blockx2 <= ballCenter.x | ||||||
|  |             && ball.y <= blocky2 && blocky2 <= ballCenter.y | ||||||
|  |         ) { return 6; } | ||||||
|  | 
 | ||||||
|  |         // Ball's top left corner
 | ||||||
|  |         if ( | ||||||
|  |             ball.x <= blockx2 && blockx2 <= ballCenter.x | ||||||
|  |             && ballCenter.y <= block.y && block.y <= bally2 | ||||||
|  |         ) { return 8; } | ||||||
|  | 
 | ||||||
|  |         // Ball's left edge
 | ||||||
|  |         if ( | ||||||
|  |             ball.x <= blockx2 && blockx2 <= ballCenter.x | ||||||
|  |         ) { return 7; } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Moving down
 | ||||||
|  |     if (velocity.y < 0) { | ||||||
|  |         // Ball's bottom right corner
 | ||||||
|  |         if ( | ||||||
|  |             ballCenter.x <= block.x && block.x <= ballx2 | ||||||
|  |             && ball.y <= blocky2 && blocky2 <= ballCenter.y | ||||||
|  |         ) { return 4; } | ||||||
|  | 
 | ||||||
|  |         // Ball's bottom left corner
 | ||||||
|  |         if ( | ||||||
|  |             ball.x <= blockx2 && blockx2 <= ballCenter.x | ||||||
|  |             && ball.y <= blocky2 && blocky2 <= ballCenter.y | ||||||
|  |         ) { return 6; } | ||||||
|  | 
 | ||||||
|  |         // Ball's bottom edge
 | ||||||
|  |         if ( | ||||||
|  |             ball.y <= blocky2 && blocky2 <= ballCenter.y | ||||||
|  |         ) { return 5; } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | f32 lerp(f32 a, f32 b, f32 t) { | ||||||
|  |     return (1 - t) * a + t * b; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | mg_mat2x3 flipY(mp_rect r) { | ||||||
|  |     return (mg_mat2x3){ | ||||||
|  |         1, 0, 0, | ||||||
|  |         0, -1, 2 * r.y + r.h, | ||||||
|  |     }; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | mg_mat2x3 flipYAt(vec2 pos) { | ||||||
|  |     return (mg_mat2x3){ | ||||||
|  |         1, 0, 0, | ||||||
|  |         0, -1, 2 * pos.y, | ||||||
|  |     }; | ||||||
|  | } | ||||||
|  |  | ||||||
|  | @ -0,0 +1,16 @@ | ||||||
|  | #!/bin/bash | ||||||
|  | 
 | ||||||
|  | # You will need dtrace2spall installed: | ||||||
|  | # | ||||||
|  | #   go install github.com/bvisness/dtrace2spall@latest | ||||||
|  | # | ||||||
|  | # You will also need `$(go env GOPATH)/bin` on your PATH. | ||||||
|  | 
 | ||||||
|  | # Run DTrace and save to profile.dtrace | ||||||
|  | sudo dtrace -n 'profile-997 /pid == $target/ { @[timestamp, pid, tid, ustack(100)] = count(); }' \ | ||||||
|  |     -x ustackframes=100 \ | ||||||
|  |     -o profile.dtrace \ | ||||||
|  |     -x aggsortkey -x aggsortkeypos=0 \ | ||||||
|  |     -c ./Pong.app/Contents/MacOS/orca | ||||||
|  | # Convert to Spall and save to profile.spall | ||||||
|  | cat profile.dtrace | dtrace2spall --freq 997 -o profile.spall --fields=_,pid,tid | ||||||
		Loading…
	
		Reference in New Issue