#include #include #include #include #include #ifdef CSR_USB_EP_0_OUT_EV_PENDING_ADDR static volatile uint8_t usb_rx_fifo[64]; static volatile uint8_t usb_rx_fifo_rd; static volatile uint8_t usb_rx_fifo_wr; static volatile int have_new_address; static volatile uint8_t new_address; // Firmware versions < 1.9 didn't have usb_address_write() static inline void usb_set_address_wrapper(uint8_t address) { if (version_major_read() < 1) return; if (version_minor_read() < 9) return; usb_address_write(address); } // Note that our PIDs are only bits 2 and 3 of the token, // since all other bits are effectively redundant at this point. enum USB_PID { USB_PID_OUT = 0, USB_PID_SOF = 1, USB_PID_IN = 2, USB_PID_SETUP = 3, }; enum epfifo_response { EPF_ACK = 0, EPF_NAK = 1, EPF_NONE = 2, EPF_STALL = 3, }; #define USB_EV_ERROR 1 #define USB_EV_PACKET 2 void usb_disconnect(void) { usb_ep_0_out_ev_enable_write(0); usb_ep_0_in_ev_enable_write(0); irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT)); usb_pullup_out_write(0); usb_set_address_wrapper(0); } void usb_connect(void) { usb_set_address_wrapper(0); usb_ep_0_out_ev_pending_write(usb_ep_0_out_ev_enable_read()); usb_ep_0_in_ev_pending_write(usb_ep_0_in_ev_pending_read()); usb_ep_0_out_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); usb_ep_0_in_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); usb_ep_1_in_ev_pending_write(usb_ep_1_in_ev_enable_read()); usb_ep_1_in_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); usb_ep_2_out_ev_pending_write(usb_ep_2_out_ev_enable_read()); usb_ep_2_in_ev_pending_write(usb_ep_2_in_ev_pending_read()); usb_ep_2_out_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); usb_ep_2_in_ev_enable_write(USB_EV_PACKET | USB_EV_ERROR); // Accept incoming data by default. usb_ep_0_out_respond_write(EPF_ACK); usb_ep_2_out_respond_write(EPF_ACK); // Reject outgoing data, since we have none to give yet. usb_ep_0_in_respond_write(EPF_NAK); usb_ep_1_in_respond_write(EPF_NAK); usb_ep_2_in_respond_write(EPF_NAK); usb_pullup_out_write(1); irq_setmask(irq_getmask() | (1 << USB_INTERRUPT)); } void usb_init(void) { usb_pullup_out_write(0); return; } #define EP0OUT_BUFFERS 4 __attribute__((aligned(4))) static uint8_t volatile usb_ep0out_buffer[EP0OUT_BUFFERS][256]; static uint8_t volatile usb_ep0out_buffer_len[EP0OUT_BUFFERS]; static uint8_t volatile usb_ep0out_last_tok[EP0OUT_BUFFERS]; static volatile uint8_t usb_ep0out_wr_ptr; static volatile uint8_t usb_ep0out_rd_ptr; static const int max_byte_length = 64; static const uint8_t * volatile current_data; static volatile int current_length; static volatile int data_offset; static volatile int data_to_send; static int next_packet_is_empty; static volatile uint8_t ep2_fifo_bytes; __attribute__((section(".ramtext"))) static void process_tx(void) { // Don't allow requeueing -- only queue more data if we're // currently set up to respond NAK. if (usb_ep_0_in_respond_read() != EPF_NAK) { return; } // Prevent us from double-filling the buffer. if (!usb_ep_0_in_ibuf_empty_read()) { return; } if (!current_data || !current_length) { return; } data_offset += data_to_send; data_to_send = current_length - data_offset; // Clamp the data to the maximum packet length if (data_to_send > max_byte_length) { data_to_send = max_byte_length; next_packet_is_empty = 0; } else if (data_to_send == max_byte_length) { next_packet_is_empty = 1; } else if (next_packet_is_empty) { next_packet_is_empty = 0; data_to_send = 0; } else if (current_data == NULL || data_to_send <= 0) { next_packet_is_empty = 0; current_data = NULL; current_length = 0; data_offset = 0; data_to_send = 0; return; } int this_offset; for (this_offset = data_offset; this_offset < (data_offset + data_to_send); this_offset++) { usb_ep_0_in_ibuf_head_write(current_data[this_offset]); } usb_ep_0_in_respond_write(EPF_ACK); return; } int usb_send(const void *data, int total_count) { while ((current_length || current_data))// && usb_ep_0_in_respond_read() != EPF_NAK) ; current_data = (uint8_t *)data; current_length = total_count; data_offset = 0; data_to_send = 0; process_tx(); return 0; } int usb_wait_for_send_done(void) { while (current_data && current_length) usb_poll(); while ((usb_ep_0_in_dtb_read() & 1) == 1) usb_poll(); return 0; } __attribute__((section(".ramtext"))) void usb_isr(void) { uint8_t ep_pending; ep_pending = usb_ep_0_out_ev_pending_read(); // We got an OUT or a SETUP packet. Copy it to usb_ep0out_buffer // and clear the "pending" bit. if (ep_pending) { uint8_t last_tok = usb_ep_0_out_last_tok_read(); int byte_count = 0; usb_ep0out_last_tok[usb_ep0out_wr_ptr] = last_tok; volatile uint8_t * obuf = usb_ep0out_buffer[usb_ep0out_wr_ptr]; while (!usb_ep_0_out_obuf_empty_read()) { obuf[byte_count++] = usb_ep_0_out_obuf_head_read(); usb_ep_0_out_obuf_head_write(0); } if (last_tok == USB_PID_SETUP) { usb_ep_0_in_dtb_write(1); data_offset = 0; current_length = 0; current_data = NULL; const struct usb_setup_request *request = (const struct usb_setup_request *)obuf; usb_setup(request); } else { usb_ep0out_buffer_len[usb_ep0out_wr_ptr] = byte_count - 2 /* Strip off CRC16 */; usb_ep0out_wr_ptr = (usb_ep0out_wr_ptr + 1) & (EP0OUT_BUFFERS-1); } usb_ep_0_out_ev_pending_write(ep_pending); usb_ep_0_out_respond_write(EPF_ACK); } ep_pending = usb_ep_0_in_ev_pending_read(); // We just got an "IN" token. Send data if we have it. if (ep_pending) { usb_ep_0_in_respond_write(EPF_NAK); usb_ep_0_in_ev_pending_write(ep_pending); if (have_new_address) { have_new_address = 0; usb_set_address_wrapper(new_address); } process_tx(); } ep_pending = usb_ep_1_in_ev_pending_read(); if (ep_pending) { usb_ep_1_in_respond_write(EPF_NAK); usb_ep_1_in_ev_pending_write(ep_pending); } ep_pending = usb_ep_2_in_ev_pending_read(); if (ep_pending) { usb_ep_2_in_respond_write(EPF_NAK); usb_ep_2_in_ev_pending_write(ep_pending); ep2_fifo_bytes = 0; } ep_pending = usb_ep_2_out_ev_pending_read(); if (ep_pending) { while (!usb_ep_2_out_obuf_empty_read()) { usb_rx_fifo[(usb_rx_fifo_wr++) & 0x3f] = usb_ep_2_out_obuf_head_read(); usb_ep_2_out_obuf_head_write(0); } // Strip off the CRC16. usb_rx_fifo_wr -= 2; usb_ep_2_out_ev_pending_write(ep_pending); usb_ep_2_out_respond_write(EPF_NAK); } return; } __attribute__((section(".ramtext"))) int usb_getc(void) { if (usb_rx_fifo_rd == usb_rx_fifo_wr) { usb_ep_2_out_respond_write(EPF_ACK); return -1; } return usb_rx_fifo[(usb_rx_fifo_rd++) & 0x3f]; } __attribute__((section(".ramtext"))) void usb_putc(char c) { usb_ep_2_in_ibuf_head_write(c); ep2_fifo_bytes++; usb_ep_2_in_respond_write(EPF_ACK); } __attribute__((section(".ramtext"))) int usb_write(const char *buf, int count) { int to_write = 64; int i; if (to_write > count) to_write = count; for (i = 0; i < to_write; i++) usb_ep_2_in_ibuf_head_write(buf[i]); ep2_fifo_bytes += to_write; usb_ep_2_in_respond_write(EPF_ACK); return to_write; } extern volatile uint8_t terminal_is_connected; __attribute__((section(".ramtext"))) int usb_can_getc(void) { if (usb_rx_fifo_rd == usb_rx_fifo_wr) { usb_ep_2_out_respond_write(EPF_ACK); return 0; } return terminal_is_connected; } __attribute__((section(".ramtext"))) int usb_can_putc(void) { return terminal_is_connected && usb_ep_2_in_ibuf_empty_read() && (usb_ep_2_in_respond_read() == EPF_NAK);// (ep2_fifo_bytes <= 60); } __attribute__((section(".ramtext"))) void usb_ack_in(void) { // usb_ep_0_in_dtb_write(1); while (usb_ep_0_in_respond_read() == EPF_ACK) ; usb_ep_0_in_respond_write(EPF_ACK); } __attribute__((section(".ramtext"))) void usb_ack_out(void) { // usb_ep_0_out_dtb_write(1); while (usb_ep_0_out_respond_read() == EPF_ACK) ; usb_ep_0_out_respond_write(EPF_ACK); } __attribute__((section(".ramtext"))) void usb_err_in(void) { usb_ep_0_in_respond_write(EPF_STALL); } __attribute__((section(".ramtext"))) void usb_err_out(void) { usb_ep_0_out_respond_write(EPF_STALL); } __attribute__((section(".ramtext"))) int usb_recv(void *buffer, unsigned int buffer_len) { // Set the OUT response to ACK, since we are in a position to receive data now. usb_ep_0_out_respond_write(EPF_ACK); while (1) { if (usb_ep0out_rd_ptr != usb_ep0out_wr_ptr) { if (usb_ep0out_last_tok[usb_ep0out_rd_ptr] == USB_PID_OUT) { unsigned int ep0_buffer_len = usb_ep0out_buffer_len[usb_ep0out_rd_ptr]; if (ep0_buffer_len < buffer_len) buffer_len = ep0_buffer_len; usb_ep0out_buffer_len[usb_ep0out_rd_ptr] = 0; memcpy(buffer, (void *)&usb_ep0out_buffer[usb_ep0out_rd_ptr], buffer_len); usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1); return buffer_len; } usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1); } } return 0; } void usb_set_address(uint8_t new_address_) { new_address = new_address_; have_new_address = 1; } __attribute__((section(".ramtext"))) void usb_poll(void) { // If some data was received, then process it. while (usb_ep0out_rd_ptr != usb_ep0out_wr_ptr) { const struct usb_setup_request *request = (const struct usb_setup_request *)(usb_ep0out_buffer[usb_ep0out_rd_ptr]); // unsigned int len = usb_ep0out_buffer_len[usb_ep0out_rd_ptr]; uint8_t last_tok = usb_ep0out_last_tok[usb_ep0out_rd_ptr]; usb_ep0out_buffer_len[usb_ep0out_rd_ptr] = 0; usb_ep0out_rd_ptr = (usb_ep0out_rd_ptr + 1) & (EP0OUT_BUFFERS-1); if (last_tok == USB_PID_SETUP) { usb_setup(request); } } process_tx(); } #endif /* CSR_USB_EP_0_OUT_EV_PENDING_ADDR */