layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in; precision mediump float; layout(std430) buffer; layout(binding = 0) restrict readonly buffer elementBufferSSBO { oc_gl_path_elt elements[]; } elementBuffer; layout(binding = 1) coherent restrict buffer segmentCountBufferSSBO { int elements[]; } segmentCountBuffer; layout(binding = 2) restrict buffer segmentBufferSSBO { oc_gl_segment elements[]; } segmentBuffer; layout(binding = 3) restrict buffer pathQueueBufferSSBO { oc_gl_path_queue elements[]; } pathQueueBuffer; layout(binding = 4) coherent restrict buffer tileQueueBufferSSBO { oc_gl_tile_queue elements[]; } tileQueueBuffer; layout(binding = 5) coherent restrict buffer tileOpCountBufferSSBO { int elements[]; } tileOpCountBuffer; layout(binding = 6) restrict buffer tileOpBufferSSBO { oc_gl_tile_op elements[]; } tileOpBuffer; layout(location = 0) uniform float scale; layout(location = 1) uniform uint tileSize; layout(location = 2) uniform int elementBufferStart; void bin_to_tiles(int segIndex) { //NOTE: add segment index to the queues of tiles it overlaps with const oc_gl_segment seg = segmentBuffer.elements[segIndex]; const oc_gl_path_queue pathQueue = pathQueueBuffer.elements[seg.pathIndex]; ivec4 pathArea = pathQueue.area; ivec4 coveredTiles = ivec4(seg.box)/int(tileSize); int xMin = max(0, coveredTiles.x - pathArea.x); int yMin = max(0, coveredTiles.y - pathArea.y); int xMax = min(coveredTiles.z - pathArea.x, pathArea.z-1); int yMax = min(coveredTiles.w - pathArea.y, pathArea.w-1); for(int y = yMin; y <= yMax; y++) { for(int x = xMin ; x <= xMax; x++) { vec4 tileBox = vec4(float(x + pathArea.x), float(y + pathArea.y), float(x + pathArea.x + 1), float(y + pathArea.y + 1)) * float(tileSize); vec2 bl = {tileBox.x, tileBox.y}; vec2 br = {tileBox.z, tileBox.y}; vec2 tr = {tileBox.z, tileBox.w}; vec2 tl = {tileBox.x, tileBox.w}; int sbl = side_of_segment(bl, seg); int sbr = side_of_segment(br, seg); int str = side_of_segment(tr, seg); int stl = side_of_segment(tl, seg); bool crossL = (stl*sbl < 0); bool crossR = (str*sbr < 0); bool crossT = (stl*str < 0); bool crossB = (sbl*sbr < 0); vec2 s0, s1; if(seg.config == OC_GL_TL||seg.config == OC_GL_BR) { s0 = seg.box.xy; s1 = seg.box.zw; } else { s0 = seg.box.xw; s1 = seg.box.zy; } bool s0Inside = s0.x >= tileBox.x && s0.x < tileBox.z && s0.y >= tileBox.y && s0.y < tileBox.w; bool s1Inside = s1.x >= tileBox.x && s1.x < tileBox.z && s1.y >= tileBox.y && s1.y < tileBox.w; if(crossL || crossR || crossT || crossB || s0Inside || s1Inside) { int tileOpIndex = atomicAdd(tileOpCountBuffer.elements[0], 1); if(tileOpIndex < tileOpBuffer.elements.length()) { tileOpBuffer.elements[tileOpIndex].kind = OC_GL_OP_SEGMENT; tileOpBuffer.elements[tileOpIndex].index = segIndex; tileOpBuffer.elements[tileOpIndex].windingOffsetOrCrossRight = 0; tileOpBuffer.elements[tileOpIndex].next = -1; int tileQueueIndex = pathQueue.tileQueues + y*pathArea.z + x; tileOpBuffer.elements[tileOpIndex].next = atomicExchange(tileQueueBuffer.elements[tileQueueIndex].first, tileOpIndex); if(tileOpBuffer.elements[tileOpIndex].next == -1) { tileQueueBuffer.elements[tileQueueIndex].last = tileOpIndex; } //NOTE: if the segment crosses the tile's bottom boundary, update the tile's winding offset if(crossB) { atomicAdd(tileQueueBuffer.elements[tileQueueIndex].windingOffset, seg.windingIncrement); } //NOTE: if the segment crosses the right boundary, mark it. if(crossR) { tileOpBuffer.elements[tileOpIndex].windingOffsetOrCrossRight = 1; } } } } } } int push_segment(in vec2 p[4], int kind, int pathIndex) { int segIndex = atomicAdd(segmentCountBuffer.elements[0], 1); if(segIndex < segmentBuffer.elements.length()) { vec2 s, c, e; switch(kind) { case OC_GL_LINE: s = p[0]; c = p[0]; e = p[1]; break; case OC_GL_QUADRATIC: s = p[0]; c = p[1]; e = p[2]; break; case OC_GL_CUBIC: { s = p[0]; float sqrNorm0 = dot(p[1]-p[0], p[1]-p[0]); float sqrNorm1 = dot(p[3]-p[2], p[3]-p[2]); if(sqrNorm0 < sqrNorm1) { c = p[2]; } else { c = p[1]; } e = p[3]; } break; } bool goingUp = e.y >= s.y; bool goingRight = e.x >= s.x; vec4 box = vec4(min(s.x, e.x), min(s.y, e.y), max(s.x, e.x), max(s.y, e.y)); segmentBuffer.elements[segIndex].kind = kind; segmentBuffer.elements[segIndex].pathIndex = pathIndex; segmentBuffer.elements[segIndex].windingIncrement = goingUp ? 1 : -1; segmentBuffer.elements[segIndex].box = box; float dx = c.x - box.x; float dy = c.y - box.y; float alpha = (box.w - box.y)/(box.z - box.x); float ofs = box.w - box.y; if(goingUp == goingRight) { if(kind == OC_GL_LINE) { segmentBuffer.elements[segIndex].config = OC_GL_BR; } else if(dy > alpha*dx) { segmentBuffer.elements[segIndex].config = OC_GL_TL; } else { segmentBuffer.elements[segIndex].config = OC_GL_BR; } } else { if(kind == OC_GL_LINE) { segmentBuffer.elements[segIndex].config = OC_GL_TR; } else if(dy < ofs - alpha*dx) { segmentBuffer.elements[segIndex].config = OC_GL_BL; } else { segmentBuffer.elements[segIndex].config = OC_GL_TR; } } } return(segIndex); } #define square(x) ((x)*(x)) #define cube(x) ((x)*(x)*(x)) void line_setup(vec2 p[4], int pathIndex) { int segIndex = push_segment(p, OC_GL_LINE, pathIndex); if(segIndex < segmentBuffer.elements.length()) { segmentBuffer.elements[segIndex].hullVertex = p[0]; bin_to_tiles(segIndex); } } vec2 quadratic_blossom(vec2 p[4], float u, float v) { vec2 b10 = u*p[1] + (1-u)*p[0]; vec2 b11 = u*p[2] + (1-u)*p[1]; vec2 b20 = v*b11 + (1-v)*b10; return(b20); } void quadratic_slice(vec2 p[4], float s0, float s1, out vec2 sp[4]) { /*NOTE: using blossoms to compute sub-curve control points ensure that the fourth point of sub-curve (s0, s1) and the first point of sub-curve (s1, s3) match. However, due to numerical errors, the evaluation of B(s=0) might not be equal to p[0] (and likewise, B(s=1) might not equal p[3]). We handle that case explicitly to ensure that we don't create gaps in the paths. */ sp[0] = (s0 == 0) ? p[0] : quadratic_blossom(p, s0, s0); sp[1] = quadratic_blossom(p, s0, s1); sp[2] = (s1 == 1) ? p[2] : quadratic_blossom(p, s1, s1); } int quadratic_monotonize(vec2 p[4], out float splits[4]) { //NOTE: compute split points int count = 0; splits[0] = 0; count++; vec2 r = (p[0] - p[1])/(p[2] - 2*p[1] + p[0]); if(r.x > r.y) { float tmp = r.x; r.x = r.y; r.y = tmp; } if(r.x > 0 && r.x < 1) { splits[count] = r.x; count++; } if(r.y > 0 && r.y < 1) { splits[count] = r.y; count++; } splits[count] = 1; count++; return(count); } mat3 barycentric_matrix(vec2 v0, vec2 v1, vec2 v2) { float det = v0.x*(v1.y-v2.y) + v1.x*(v2.y-v0.y) + v2.x*(v0.y - v1.y); mat3 B = {{v1.y - v2.y, v2.y-v0.y, v0.y-v1.y}, {v2.x - v1.x, v0.x-v2.x, v1.x-v0.x}, {v1.x*v2.y-v2.x*v1.y, v2.x*v0.y-v0.x*v2.y, v0.x*v1.y-v1.x*v0.y}}; B *= (1/det); return(B); } void quadratic_emit(vec2 p[4], int pathIndex) { int segIndex = push_segment(p, OC_GL_QUADRATIC, pathIndex); if(segIndex < segmentBuffer.elements.length()) { //NOTE: compute implicit equation matrix float det = p[0].x*(p[1].y-p[2].y) + p[1].x*(p[2].y-p[0].y) + p[2].x*(p[0].y - p[1].y); float a = p[0].y - p[1].y + 0.5*(p[2].y - p[0].y); float b = p[1].x - p[0].x + 0.5*(p[0].x - p[2].x); float c = p[0].x*p[1].y - p[1].x*p[0].y + 0.5*(p[2].x*p[0].y - p[0].x*p[2].y); float d = p[0].y - p[1].y; float e = p[1].x - p[0].x; float f = p[0].x*p[1].y - p[1].x*p[0].y; float flip = ( segmentBuffer.elements[segIndex].config == OC_GL_TL || segmentBuffer.elements[segIndex].config == OC_GL_BL)? -1 : 1; float g = flip*(p[2].x*(p[0].y - p[1].y) + p[0].x*(p[1].y - p[2].y) + p[1].x*(p[2].y - p[0].y)); segmentBuffer.elements[segIndex].implicitMatrix = (1/det)*mat3(a, d, 0., b, e, 0., c, f, g); segmentBuffer.elements[segIndex].hullVertex = p[1]; bin_to_tiles(segIndex); } } void quadratic_setup(vec2 p[4], int pathIndex) { float splits[4]; int splitCount = quadratic_monotonize(p, splits); //NOTE: produce bézier curve for each consecutive pair of roots for(int sliceIndex=0; sliceIndex= 0) { count = (det == 0) ? 1 : 2; if(b > 0) { float q = b + sqrt(det); r[0] = -c/q; r[1] = -q/a; } else if(b < 0) { float q = -b + sqrt(det); r[0] = q/a; r[1] = c/q; } else { float q = sqrt(-a*c); if(abs(a) >= abs(c)) { r[0] = q/a; r[1] = -q/a; } else { r[0] = -c/q; r[1] = c/q; } } } } if(count>1 && r[0] > r[1]) { float tmp = r[0]; r[0] = r[1]; r[1] = tmp; } return(count); } int quadratic_roots(float a, float b, float c, out float r[2]) { float det = square(b)/4. - a*c; return(quadratic_roots_with_det(a, b, c, det, r)); } vec2 cubic_blossom(vec2 p[4], float u, float v, float w) { vec2 b10 = u*p[1] + (1-u)*p[0]; vec2 b11 = u*p[2] + (1-u)*p[1]; vec2 b12 = u*p[3] + (1-u)*p[2]; vec2 b20 = v*b11 + (1-v)*b10; vec2 b21 = v*b12 + (1-v)*b11; vec2 b30 = w*b21 + (1-w)*b20; return(b30); } void cubic_slice(vec2 p[4], float s0, float s1, out vec2 sp[4]) { /*NOTE: using blossoms to compute sub-curve control points ensure that the fourth point of sub-curve (s0, s1) and the first point of sub-curve (s1, s3) match. However, due to numerical errors, the evaluation of B(s=0) might not be equal to p[0] (and likewise, B(s=1) might not equal p[3]). We handle that case explicitly to ensure that we don't create gaps in the paths. */ sp[0] = (s0 == 0) ? p[0] : cubic_blossom(p, s0, s0, s0); sp[1] = cubic_blossom(p, s0, s0, s1); sp[2] = cubic_blossom(p, s0, s1, s1); sp[3] = (s1 == 1) ? p[3] : cubic_blossom(p, s1, s1, s1); } #define CUBIC_ERROR 0 #define CUBIC_SERPENTINE 1 #define CUBIC_CUSP 2 #define CUBIC_CUSP_INFINITY 3 #define CUBIC_LOOP 4 #define CUBIC_DEGENERATE_QUADRATIC 5 #define CUBIC_DEGENERATE_LINE 6 struct cubic_info { int kind; mat4 K; vec2 ts[2]; float d1; float d2; float d3; }; cubic_info cubic_classify(vec2 c[4]) { cubic_info result; result.kind = CUBIC_ERROR; mat4 F; /*NOTE(martin): now, compute determinants d0, d1, d2, d3, which gives the coefficients of the inflection points polynomial: I(t, s) = d0*t^3 - 3*d1*t^2*s + 3*d2*t*s^2 - d3*s^3 The roots of this polynomial are the inflection points of the parametric curve, in homogeneous coordinates (ie we can have an inflection point at inifinity with s=0). |x3 y3 w3| |x3 y3 w3| |x3 y3 w3| |x2 y2 w2| d0 = det |x2 y2 w2| d1 = -det |x2 y2 w2| d2 = det |x1 y1 w1| d3 = -det |x1 y1 w1| |x1 y1 w1| |x0 y0 w0| |x0 y0 w0| |x0 y0 w0| In our case, the pi.w equal 1 (no point at infinity), so _in_the_power_basis_, w1 = w2 = w3 = 0 and w0 = 1 (which also means d0 = 0) //WARN: there seems to be a mismatch between the signs of the d_i and the orientation test in the Loop-Blinn paper? // flipping the sign of the d_i doesn't change the roots (and the implicit matrix), but it does change the orientation. // Keeping the signs of the paper puts the interior on the left of parametric travel, unlike what's stated in the paper. // this may very well be an error on my part that's cancelled by flipping the signs of the d_i though! */ float d1 = -(c[3].y*c[2].x - c[3].x*c[2].y); float d2 = -(c[3].x*c[1].y - c[3].y*c[1].x); float d3 = -(c[2].y*c[1].x - c[2].x*c[1].y); result.d1 = d1; result.d2 = d2; result.d3 = d3; //NOTE(martin): compute the second factor of the discriminant discr(I) = d1^2*(3*d2^2 - 4*d3*d1) float discrFactor2 = 3.0*square(d2) - 4.0*d3*d1; //NOTE(martin): each following case gives the number of roots, hence the category of the parametric curve if(abs(d1) <= 1e-6 && abs(d2) <= 1e-6 && abs(d3) > 1e-6) { //NOTE(martin): quadratic degenerate case //NOTE(martin): compute quadratic curve control point, which is at p0 + 1.5*(p1-p0) = 1.5*p1 - 0.5*p0 result.kind = CUBIC_DEGENERATE_QUADRATIC; } else if( (discrFactor2 > 0 && abs(d1) > 1e-6) ||(discrFactor2 == 0 && abs(d1) > 1e-6)) { //NOTE(martin): serpentine curve or cusp with inflection at infinity // (these two cases are handled the same way). //NOTE(martin): compute the solutions (tl, sl), (tm, sm), and (tn, sn) of the inflection point equation float tmtl[2]; quadratic_roots_with_det(1, -2*d2, (4./3.*d1*d3), (1./3.)*discrFactor2, tmtl); float tm = tmtl[0]; float sm = 2*d1; float tl = tmtl[1]; float sl = 2*d1; float invNorm = 1/sqrt(square(tm) + square(sm)); tm *= invNorm; sm *= invNorm; invNorm = 1/sqrt(square(tl) + square(sl)); tl *= invNorm; sl *= invNorm; /*NOTE(martin): the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F: | tl*tm tl^3 tm^3 1 | | -sm*tl - sl*tm -3sl*tl^2 -3*sm*tm^2 0 | | sl*sm 3*sl^2*tl 3*sm^2*tm 0 | | 0 -sl^3 -sm^3 0 | */ result.kind = (discrFactor2 > 0 && d1 != 0) ? CUBIC_SERPENTINE : CUBIC_CUSP; F = mat4(tl*tm, -sm*tl-sl*tm, sl*sm, 0, cube(tl), -3*sl*square(tl), 3*square(sl)*tl, -cube(sl), cube(tm), -3*sm*square(tm), 3*square(sm)*tm, -cube(sm), 1, 0, 0, 0); result.ts[0] = vec2(tm, sm); result.ts[1] = vec2(tl, sl); } else if(discrFactor2 < 0 && abs(d1) > 1e-6) { //NOTE(martin): loop curve result.kind = CUBIC_LOOP; float tetd[2]; quadratic_roots_with_det(1, -2*d2, 4*(square(d2)-d1*d3), -discrFactor2, tetd); float td = tetd[1]; float sd = 2*d1; float te = tetd[0]; float se = 2*d1; float invNorm = 1/sqrt(square(td) + square(sd)); td *= invNorm; sd *= invNorm; invNorm = 1/sqrt(square(te) + square(se)); te *= invNorm; se *= invNorm; /*NOTE(martin): the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F: | td*te td^2*te td*te^2 1 | | -se*td - sd*te -se*td^2 - 2sd*te*td -sd*te^2 - 2*se*td*te 0 | | sd*se te*sd^2 + 2*se*td*sd td*se^2 + 2*sd*te*se 0 | | 0 -sd^2*se -sd*se^2 0 | */ F = mat4(td*te, -se*td-sd*te, sd*se, 0, square(td)*te, -se*square(td)-2*sd*te*td, te*square(sd)+2*se*td*sd, -square(sd)*se, td*square(te), -sd*square(te)-2*se*td*te, td*square(se)+2*sd*te*se, -sd*square(se), 1, 0, 0, 0); result.ts[0] = vec2(td, sd); result.ts[1] = vec2(te, se); } else if(d2 != 0) { //NOTE(martin): cusp with cusp at infinity float tl = d3; float sl = 3*d2; float invNorm = 1/sqrt(square(tl)+square(sl)); tl *= invNorm; sl *= invNorm; /*NOTE(martin): the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F: | tl tl^3 1 1 | | -sl -3sl*tl^2 0 0 | | 0 3*sl^2*tl 0 0 | | 0 -sl^3 0 0 | */ result.kind = CUBIC_CUSP_INFINITY; F = mat4(tl, -sl, 0, 0, cube(tl), -3*sl*square(tl), 3*square(sl)*tl, -cube(sl), 1, 0, 0, 0, 1, 0, 0, 0); result.ts[0] = vec2(tl, sl); result.ts[1] = vec2(0, 0); } else { //NOTE(martin): line or point degenerate case result.kind = CUBIC_DEGENERATE_LINE; } /* F is then multiplied by M3^(-1) on the left which yelds the bezier coefficients k, l, m, n at the control points. | 1 0 0 0 | M3^(-1) = | 1 1/3 0 0 | | 1 2/3 1/3 0 | | 1 1 1 1 | */ mat4 invM3 = mat4(1, 1, 1, 1, 0, 1./3., 2./3., 1, 0, 0, 1./3., 1, 0, 0, 0, 1); result.K = transpose(invM3*F); return(result); } vec2 select_hull_vertex(vec2 p0, vec2 p1, vec2 p2, vec2 p3) { /*NOTE: check intersection of lines (p1-p0) and (p3-p2) P = p0 + u(p1-p0) P = p2 + w(p3-p2) control points are inside a right triangle so we should always find an intersection */ vec2 pm; float det = (p1.x - p0.x)*(p3.y - p2.y) - (p1.y - p0.y)*(p3.x - p2.x); float sqrNorm0 = dot(p1-p0, p1-p0); float sqrNorm1 = dot(p2-p3, p2-p3); if(abs(det) < 1e-3 || sqrNorm0 < 0.1 || sqrNorm1 < 0.1) { if(sqrNorm0 < sqrNorm1) { pm = p2; } else { pm = p1; } } else { float u = ((p0.x - p2.x)*(p2.y - p3.y) - (p0.y - p2.y)*(p2.x - p3.x))/det; pm = p0 + u*(p1-p0); } return(pm); } void cubic_emit(cubic_info curve, vec2 p[4], float s0, float s1, vec2 sp[4], int pathIndex) { int segIndex = push_segment(sp, OC_GL_CUBIC, pathIndex); if(segIndex < segmentBuffer.elements.length()) { vec2 v0 = p[0]; vec2 v1 = p[3]; vec2 v2; mat3 K; //TODO: haul that up in caller float sqrNorm0 = dot(p[1]-p[0], p[1]-p[0]); float sqrNorm1 = dot(p[2]-p[3], p[2]-p[3]); if(dot(p[0]-p[3], p[0]-p[3]) > 1e-5) { if(sqrNorm0 >= sqrNorm1) { v2 = p[1]; K = mat3(curve.K[0].xyz, curve.K[3].xyz, curve.K[1].xyz); } else { v2 = p[2]; K = mat3(curve.K[0].xyz, curve.K[3].xyz, curve.K[2].xyz); } } else { v1 = p[1]; v2 = p[2]; K = mat3(curve.K[0].xyz, curve.K[1].xyz, curve.K[2].xyz); } //NOTE: set matrices //TODO: should we compute matrix relative to a base point to avoid loss of precision // when computing barycentric matrix? mat3 B = barycentric_matrix(v0, v1, v2); segmentBuffer.elements[segIndex].implicitMatrix = K*B; segmentBuffer.elements[segIndex].hullVertex = select_hull_vertex(sp[0], sp[1], sp[2], sp[3]); //NOTE: compute sign flip segmentBuffer.elements[segIndex].sign = 1; if( curve.kind == CUBIC_SERPENTINE || curve.kind == CUBIC_CUSP) { segmentBuffer.elements[segIndex].sign = (curve.d1 < 0)? -1 : 1; } else if(curve.kind == CUBIC_LOOP) { float d1 = curve.d1; float d2 = curve.d2; float d3 = curve.d3; float H0 = d3*d1-square(d2) + d1*d2*s0 - square(d1)*square(s0); float H1 = d3*d1-square(d2) + d1*d2*s1 - square(d1)*square(s1); float H = (abs(H0) > abs(H1)) ? H0 : H1; segmentBuffer.elements[segIndex].sign = (H*d1 > 0) ? -1 : 1; } if(sp[3].y > sp[0].y) { segmentBuffer.elements[segIndex].sign *= -1; } //NOTE: bin to tiles bin_to_tiles(segIndex); } } void cubic_setup(vec2 p[4], int pathIndex) { /*NOTE(martin): first convert the control points to power basis, multiplying by M3 | 1 0 0 0| |p0| |c0| M3 = |-3 3 0 0|, B = |p1|, C = |c1| = M3*B | 3 -6 3 0| |p2| |c2| |-1 3 -3 1| |p3| |c3| */ vec2 c[4] = { p[0], 3.0*(p[1] - p[0]), 3.0*(p[0] + p[2] - 2*p[1]), 3.0*(p[1] - p[2]) + p[3] - p[0]}; //NOTE: get classification, implicit matrix, double points and inflection points cubic_info curve = cubic_classify(c); if(curve.kind == CUBIC_DEGENERATE_LINE) { vec2 l[4] = {p[0], p[3], vec2(0), vec2(0)}; line_setup(l, pathIndex); return; } else if(curve.kind == CUBIC_DEGENERATE_QUADRATIC) { vec2 quadPoint = vec2(1.5*p[1].x - 0.5*p[0].x, 1.5*p[1].y - 0.5*p[0].y); vec2 q[4] = {p[0], quadPoint, p[3], vec2(0)}; quadratic_setup(q, pathIndex); return; } //NOTE: get the roots of B'(s) = 3.c3.s^2 + 2.c2.s + c1 float rootsX[2]; int rootCountX = quadratic_roots(3*c[3].x, 2*c[2].x, c[1].x, rootsX); float rootsY[2]; int rootCountY = quadratic_roots(3*c[3].y, 2*c[2].y, c[1].y, rootsY); float roots[6]; for(int i=0; i=0 && roots[j]>tmp) { roots[j+1] = roots[j]; j--; } roots[j+1] = tmp; } //NOTE: compute split points float splits[8]; int splitCount = 0; splits[0] = 0; splitCount++; for(int i=0; i 0 && roots[i] < 1) { splits[splitCount] = roots[i]; splitCount++; } } splits[splitCount] = 1; splitCount++; //NOTE: for each monotonic segment, compute hull matrix and sign, and emit segment for(int sliceIndex=0; sliceIndex