/************************************************************/ /** * * @file: mtl_canvas.m * @author: Martin Fouilleul * @date: 12/07/2020 * @revision: 24/01/2023 * *****************************************************************/ #import #import #include #include "app/osx_app.h" #include "graphics_surface.h" #include "util/macros.h" #include "mtl_renderer.h" const int OC_MTL_INPUT_BUFFERS_COUNT = 3, OC_MTL_TILE_SIZE = 16, OC_MTL_MSAA_COUNT = 8; typedef struct oc_mtl_canvas_backend { oc_canvas_backend interface; oc_mtl_surface* surface; id pathPipeline; id segmentPipeline; id backpropPipeline; id mergePipeline; id rasterPipeline; id blitPipeline; id outTexture; int bufferIndex; dispatch_semaphore_t bufferSemaphore; id pathBuffer[OC_MTL_INPUT_BUFFERS_COUNT]; id elementBuffer[OC_MTL_INPUT_BUFFERS_COUNT]; id logBuffer[OC_MTL_INPUT_BUFFERS_COUNT]; id logOffsetBuffer[OC_MTL_INPUT_BUFFERS_COUNT]; id segmentCountBuffer; id segmentBuffer; id pathQueueBuffer; id tileQueueBuffer; id tileQueueCountBuffer; id tileOpBuffer; id tileOpCountBuffer; id screenTilesBuffer; id rasterDispatchBuffer; int msaaCount; oc_vec2 frameSize; // encoding context int eltCap; int eltCount; int eltBatchStart; int pathCap; int pathCount; int pathBatchStart; oc_primitive* primitive; oc_vec4 pathScreenExtents; oc_vec4 pathUserExtents; int maxTileQueueCount; int maxSegmentCount; int currentImageIndex; } oc_mtl_canvas_backend; typedef struct oc_mtl_image_data { oc_image_data interface; id texture; } oc_mtl_image_data; void oc_mtl_print_log(int bufferIndex, id logBuffer, id logOffsetBuffer) { char* log = [logBuffer contents]; int size = *(int*)[logOffsetBuffer contents]; if(size) { oc_log_info("Log from buffer %i:\n", bufferIndex); int index = 0; while(index < size) { int len = strlen(log + index); printf("%s", log + index); index += (len + 1); } } } static void oc_mtl_update_path_extents(oc_vec4* extents, oc_vec2 p) { extents->x = oc_min(extents->x, p.x); extents->y = oc_min(extents->y, p.y); extents->z = oc_max(extents->z, p.x); extents->w = oc_max(extents->w, p.y); } id oc_mtl_grow_input_buffer(id device, id oldBuffer, int oldCopySize, int newSize) { @autoreleasepool { MTLResourceOptions bufferOptions = MTLResourceCPUCacheModeWriteCombined | MTLResourceStorageModeShared; id newBuffer = [device newBufferWithLength:newSize options:bufferOptions]; memcpy([newBuffer contents], [oldBuffer contents], oldCopySize); [oldBuffer release]; return (newBuffer); } } void oc_mtl_canvas_encode_element(oc_mtl_canvas_backend* backend, oc_path_elt_type kind, oc_vec2* p) { int bufferIndex = backend->bufferIndex; int bufferCap = [backend->elementBuffer[bufferIndex] length] / sizeof(oc_mtl_path_elt); if(backend->eltCount >= bufferCap) { int newBufferCap = (int)(bufferCap * 1.5); int newBufferSize = newBufferCap * sizeof(oc_mtl_path_elt); oc_log_info("growing element buffer to %i elements\n", newBufferCap); backend->elementBuffer[bufferIndex] = oc_mtl_grow_input_buffer(backend->surface->device, backend->elementBuffer[bufferIndex], backend->eltCount * sizeof(oc_mtl_path_elt), newBufferSize); } oc_mtl_path_elt* elements = (oc_mtl_path_elt*)[backend->elementBuffer[bufferIndex] contents]; oc_mtl_path_elt* elt = &elements[backend->eltCount]; backend->eltCount++; elt->pathIndex = backend->pathCount - backend->pathBatchStart; int count = 0; switch(kind) { case OC_PATH_LINE: backend->maxSegmentCount += 1; elt->kind = OC_MTL_LINE; count = 2; break; case OC_PATH_QUADRATIC: backend->maxSegmentCount += 3; elt->kind = OC_MTL_QUADRATIC; count = 3; break; case OC_PATH_CUBIC: backend->maxSegmentCount += 7; elt->kind = OC_MTL_CUBIC; count = 4; break; default: break; } for(int i = 0; i < count; i++) { oc_mtl_update_path_extents(&backend->pathUserExtents, p[i]); oc_vec2 screenP = oc_mat2x3_mul(backend->primitive->attributes.transform, p[i]); elt->p[i] = (vector_float2){ screenP.x, screenP.y }; oc_mtl_update_path_extents(&backend->pathScreenExtents, screenP); } } void oc_mtl_encode_path(oc_mtl_canvas_backend* backend, oc_primitive* primitive, float scale) { int bufferIndex = backend->bufferIndex; int bufferCap = [backend->pathBuffer[bufferIndex] length] / sizeof(oc_mtl_path); if(backend->pathCount >= bufferCap) { int newBufferCap = (int)(bufferCap * 1.5); int newBufferSize = newBufferCap * sizeof(oc_mtl_path); oc_log_info("growing path buffer to %i elements\n", newBufferCap); backend->pathBuffer[bufferIndex] = oc_mtl_grow_input_buffer(backend->surface->device, backend->pathBuffer[bufferIndex], backend->eltCount * sizeof(oc_mtl_path), newBufferSize); } oc_mtl_path* pathBufferData = (oc_mtl_path*)[backend->pathBuffer[backend->bufferIndex] contents]; oc_mtl_path* path = &(pathBufferData[backend->pathCount]); backend->pathCount++; path->cmd = (oc_mtl_cmd)primitive->cmd; path->box = (vector_float4){ backend->pathScreenExtents.x, backend->pathScreenExtents.y, backend->pathScreenExtents.z, backend->pathScreenExtents.w }; path->clip = (vector_float4){ primitive->attributes.clip.x, primitive->attributes.clip.y, primitive->attributes.clip.x + primitive->attributes.clip.w, primitive->attributes.clip.y + primitive->attributes.clip.h }; path->color = (vector_float4){ primitive->attributes.color.r, primitive->attributes.color.g, primitive->attributes.color.b, primitive->attributes.color.a }; oc_rect srcRegion = primitive->attributes.srcRegion; oc_rect destRegion = { backend->pathUserExtents.x, backend->pathUserExtents.y, backend->pathUserExtents.z - backend->pathUserExtents.x, backend->pathUserExtents.w - backend->pathUserExtents.y }; if(!oc_image_is_nil(primitive->attributes.image)) { oc_vec2 texSize = oc_image_size(primitive->attributes.image); oc_mat2x3 srcRegionToImage = { 1 / texSize.x, 0, srcRegion.x / texSize.x, 0, 1 / texSize.y, srcRegion.y / texSize.y }; oc_mat2x3 destRegionToSrcRegion = { srcRegion.w / destRegion.w, 0, 0, 0, srcRegion.h / destRegion.h, 0 }; oc_mat2x3 userToDestRegion = { 1, 0, -destRegion.x, 0, 1, -destRegion.y }; oc_mat2x3 screenToUser = oc_mat2x3_inv(primitive->attributes.transform); oc_mat2x3 uvTransform = srcRegionToImage; uvTransform = oc_mat2x3_mul_m(uvTransform, destRegionToSrcRegion); uvTransform = oc_mat2x3_mul_m(uvTransform, userToDestRegion); uvTransform = oc_mat2x3_mul_m(uvTransform, screenToUser); path->uvTransform = simd_matrix(simd_make_float3(uvTransform.m[0] / scale, uvTransform.m[3] / scale, 0), simd_make_float3(uvTransform.m[1] / scale, uvTransform.m[4] / scale, 0), simd_make_float3(uvTransform.m[2], uvTransform.m[5], 1)); } path->texture = backend->currentImageIndex; int firstTileX = path->box.x * scale / OC_MTL_TILE_SIZE; int firstTileY = path->box.y * scale / OC_MTL_TILE_SIZE; int lastTileX = path->box.z * scale / OC_MTL_TILE_SIZE; int lastTileY = path->box.w * scale / OC_MTL_TILE_SIZE; int nTilesX = lastTileX - firstTileX + 1; int nTilesY = lastTileY - firstTileY + 1; backend->maxTileQueueCount += (nTilesX * nTilesY); } static bool oc_intersect_hull_legs(oc_vec2 p0, oc_vec2 p1, oc_vec2 p2, oc_vec2 p3, oc_vec2* intersection) { /*NOTE: check intersection of lines (p0-p1) and (p2-p3) P = p0 + u(p1-p0) P = p2 + w(p3-p2) */ bool found = false; f32 den = (p0.x - p1.x) * (p2.y - p3.y) - (p0.y - p1.y) * (p2.x - p3.x); if(fabs(den) > 0.0001) { f32 u = ((p0.x - p2.x) * (p2.y - p3.y) - (p0.y - p2.y) * (p2.x - p3.x)) / den; f32 w = ((p0.x - p2.x) * (p0.y - p1.y) - (p0.y - p2.y) * (p0.x - p1.x)) / den; intersection->x = p0.x + u * (p1.x - p0.x); intersection->y = p0.y + u * (p1.y - p0.y); found = true; } return (found); } static bool oc_offset_hull(int count, oc_vec2* p, oc_vec2* result, f32 offset) { //NOTE: we should have no more than two coincident points here. This means the leg between // those two points can't be offset, but we can set a double point at the start of first leg, // end of first leg, or we can join the first and last leg to create a missing middle one oc_vec2 legs[3][2] = { 0 }; bool valid[3] = { 0 }; for(int i = 0; i < count - 1; i++) { oc_vec2 n = { p[i].y - p[i + 1].y, p[i + 1].x - p[i].x }; f32 norm = sqrt(n.x * n.x + n.y * n.y); if(norm >= 1e-6) { n = oc_vec2_mul(offset / norm, n); legs[i][0] = oc_vec2_add(p[i], n); legs[i][1] = oc_vec2_add(p[i + 1], n); valid[i] = true; } } //NOTE: now we find intersections // first point is either the start of the first or second leg if(valid[0]) { result[0] = legs[0][0]; } else { OC_ASSERT(valid[1]); result[0] = legs[1][0]; } for(int i = 1; i < count - 1; i++) { //NOTE: we're computing the control point i, at the end of leg (i-1) if(!valid[i - 1]) { OC_ASSERT(valid[i]); result[i] = legs[i][0]; } else if(!valid[i]) { OC_ASSERT(valid[i - 1]); result[i] = legs[i - 1][0]; } else { if(!oc_intersect_hull_legs(legs[i - 1][0], legs[i - 1][1], legs[i][0], legs[i][1], &result[i])) { // legs don't intersect. return (false); } } } if(valid[count - 2]) { result[count - 1] = legs[count - 2][1]; } else { OC_ASSERT(valid[count - 3]); result[count - 1] = legs[count - 3][1]; } return (true); } static oc_vec2 oc_quadratic_get_point(oc_vec2 p[3], f32 t) { oc_vec2 r; f32 oneMt = 1 - t; f32 oneMt2 = oc_square(oneMt); f32 t2 = oc_square(t); r.x = oneMt2 * p[0].x + 2 * oneMt * t * p[1].x + t2 * p[2].x; r.y = oneMt2 * p[0].y + 2 * oneMt * t * p[1].y + t2 * p[2].y; return (r); } static void oc_quadratic_split(oc_vec2 p[3], f32 t, oc_vec2 outLeft[3], oc_vec2 outRight[3]) { //NOTE(martin): split bezier curve p at parameter t, using De Casteljau's algorithm // the q_n are the points along the hull's segments at parameter t // s is the split point. f32 oneMt = 1 - t; oc_vec2 q0 = { oneMt * p[0].x + t * p[1].x, oneMt * p[0].y + t * p[1].y }; oc_vec2 q1 = { oneMt * p[1].x + t * p[2].x, oneMt * p[1].y + t * p[2].y }; oc_vec2 s = { oneMt * q0.x + t * q1.x, oneMt * q0.y + t * q1.y }; outLeft[0] = p[0]; outLeft[1] = q0; outLeft[2] = s; outRight[0] = s; outRight[1] = q1; outRight[2] = p[2]; } static oc_vec2 oc_cubic_get_point(oc_vec2 p[4], f32 t) { oc_vec2 r; f32 oneMt = 1 - t; f32 oneMt2 = oc_square(oneMt); f32 oneMt3 = oneMt2 * oneMt; f32 t2 = oc_square(t); f32 t3 = t2 * t; r.x = oneMt3 * p[0].x + 3 * oneMt2 * t * p[1].x + 3 * oneMt * t2 * p[2].x + t3 * p[3].x; r.y = oneMt3 * p[0].y + 3 * oneMt2 * t * p[1].y + 3 * oneMt * t2 * p[2].y + t3 * p[3].y; return (r); } static void oc_cubic_split(oc_vec2 p[4], f32 t, oc_vec2 outLeft[4], oc_vec2 outRight[4]) { //NOTE(martin): split bezier curve p at parameter t, using De Casteljau's algorithm // the q_n are the points along the hull's segments at parameter t // the r_n are the points along the (q_n, q_n+1) segments at parameter t // s is the split point. oc_vec2 q0 = { (1 - t) * p[0].x + t * p[1].x, (1 - t) * p[0].y + t * p[1].y }; oc_vec2 q1 = { (1 - t) * p[1].x + t * p[2].x, (1 - t) * p[1].y + t * p[2].y }; oc_vec2 q2 = { (1 - t) * p[2].x + t * p[3].x, (1 - t) * p[2].y + t * p[3].y }; oc_vec2 r0 = { (1 - t) * q0.x + t * q1.x, (1 - t) * q0.y + t * q1.y }; oc_vec2 r1 = { (1 - t) * q1.x + t * q2.x, (1 - t) * q1.y + t * q2.y }; oc_vec2 s = { (1 - t) * r0.x + t * r1.x, (1 - t) * r0.y + t * r1.y }; ; outLeft[0] = p[0]; outLeft[1] = q0; outLeft[2] = r0; outLeft[3] = s; outRight[0] = s; outRight[1] = r1; outRight[2] = q2; outRight[3] = p[3]; } void oc_mtl_render_stroke_line(oc_mtl_canvas_backend* backend, oc_vec2* p) { f32 width = backend->primitive->attributes.width; oc_vec2 v = { p[1].x - p[0].x, p[1].y - p[0].y }; oc_vec2 n = { v.y, -v.x }; f32 norm = sqrt(n.x * n.x + n.y * n.y); oc_vec2 offset = oc_vec2_mul(0.5 * width / norm, n); oc_vec2 left[2] = { oc_vec2_add(p[0], offset), oc_vec2_add(p[1], offset) }; oc_vec2 right[2] = { oc_vec2_add(p[1], oc_vec2_mul(-1, offset)), oc_vec2_add(p[0], oc_vec2_mul(-1, offset)) }; oc_vec2 joint0[2] = { oc_vec2_add(p[0], oc_vec2_mul(-1, offset)), oc_vec2_add(p[0], offset) }; oc_vec2 joint1[2] = { oc_vec2_add(p[1], offset), oc_vec2_add(p[1], oc_vec2_mul(-1, offset)) }; oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, right); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, left); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, joint0); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, joint1); } void oc_mtl_render_stroke_quadratic(oc_mtl_canvas_backend* backend, oc_vec2* p) { f32 width = backend->primitive->attributes.width; f32 tolerance = oc_min(backend->primitive->attributes.tolerance, 0.5 * width); //NOTE: check for degenerate line case const f32 equalEps = 1e-3; if(oc_vec2_close(p[0], p[1], equalEps)) { oc_mtl_render_stroke_line(backend, p + 1); return; } else if(oc_vec2_close(p[1], p[2], equalEps)) { oc_mtl_render_stroke_line(backend, p); return; } oc_vec2 leftHull[3]; oc_vec2 rightHull[3]; if(!oc_offset_hull(3, p, leftHull, width / 2) || !oc_offset_hull(3, p, rightHull, -width / 2)) { //TODO split and recurse //NOTE: offsetting the hull failed, split the curve oc_vec2 splitLeft[3]; oc_vec2 splitRight[3]; oc_quadratic_split(p, 0.5, splitLeft, splitRight); oc_mtl_render_stroke_quadratic(backend, splitLeft); oc_mtl_render_stroke_quadratic(backend, splitRight); } else { const int CHECK_SAMPLE_COUNT = 5; f32 checkSamples[CHECK_SAMPLE_COUNT] = { 1. / 6, 2. / 6, 3. / 6, 4. / 6, 5. / 6 }; f32 d2LowBound = oc_square(0.5 * width - tolerance); f32 d2HighBound = oc_square(0.5 * width + tolerance); f32 maxOvershoot = 0; f32 maxOvershootParameter = 0; for(int i = 0; i < CHECK_SAMPLE_COUNT; i++) { f32 t = checkSamples[i]; oc_vec2 c = oc_quadratic_get_point(p, t); oc_vec2 cp = oc_quadratic_get_point(leftHull, t); oc_vec2 cn = oc_quadratic_get_point(rightHull, t); f32 positiveDistSquare = oc_square(c.x - cp.x) + oc_square(c.y - cp.y); f32 negativeDistSquare = oc_square(c.x - cn.x) + oc_square(c.y - cn.y); f32 positiveOvershoot = oc_max(positiveDistSquare - d2HighBound, d2LowBound - positiveDistSquare); f32 negativeOvershoot = oc_max(negativeDistSquare - d2HighBound, d2LowBound - negativeDistSquare); f32 overshoot = oc_max(positiveOvershoot, negativeOvershoot); if(overshoot > maxOvershoot) { maxOvershoot = overshoot; maxOvershootParameter = t; } } if(maxOvershoot > 0) { oc_vec2 splitLeft[3]; oc_vec2 splitRight[3]; oc_quadratic_split(p, maxOvershootParameter, splitLeft, splitRight); oc_mtl_render_stroke_quadratic(backend, splitLeft); oc_mtl_render_stroke_quadratic(backend, splitRight); } else { oc_vec2 tmp = leftHull[0]; leftHull[0] = leftHull[2]; leftHull[2] = tmp; oc_mtl_canvas_encode_element(backend, OC_PATH_QUADRATIC, rightHull); oc_mtl_canvas_encode_element(backend, OC_PATH_QUADRATIC, leftHull); oc_vec2 joint0[2] = { rightHull[2], leftHull[0] }; oc_vec2 joint1[2] = { leftHull[2], rightHull[0] }; oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, joint0); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, joint1); } } } void oc_mtl_render_stroke_cubic(oc_mtl_canvas_backend* backend, oc_vec2* p) { f32 width = backend->primitive->attributes.width; f32 tolerance = oc_min(backend->primitive->attributes.tolerance, 0.5 * width); //NOTE: check degenerate line cases f32 equalEps = 1e-3; if((oc_vec2_close(p[0], p[1], equalEps) && oc_vec2_close(p[2], p[3], equalEps)) || (oc_vec2_close(p[0], p[1], equalEps) && oc_vec2_close(p[1], p[2], equalEps)) || (oc_vec2_close(p[1], p[2], equalEps) && oc_vec2_close(p[2], p[3], equalEps))) { oc_vec2 line[2] = { p[0], p[3] }; oc_mtl_render_stroke_line(backend, line); return; } else if(oc_vec2_close(p[0], p[1], equalEps) && oc_vec2_close(p[1], p[3], equalEps)) { oc_vec2 line[2] = { p[0], oc_vec2_add(oc_vec2_mul(5. / 9, p[0]), oc_vec2_mul(4. / 9, p[2])) }; oc_mtl_render_stroke_line(backend, line); return; } else if(oc_vec2_close(p[0], p[2], equalEps) && oc_vec2_close(p[2], p[3], equalEps)) { oc_vec2 line[2] = { p[0], oc_vec2_add(oc_vec2_mul(5. / 9, p[0]), oc_vec2_mul(4. / 9, p[1])) }; oc_mtl_render_stroke_line(backend, line); return; } oc_vec2 leftHull[4]; oc_vec2 rightHull[4]; if(!oc_offset_hull(4, p, leftHull, width / 2) || !oc_offset_hull(4, p, rightHull, -width / 2)) { //TODO split and recurse //NOTE: offsetting the hull failed, split the curve oc_vec2 splitLeft[4]; oc_vec2 splitRight[4]; oc_cubic_split(p, 0.5, splitLeft, splitRight); oc_mtl_render_stroke_cubic(backend, splitLeft); oc_mtl_render_stroke_cubic(backend, splitRight); } else { const int CHECK_SAMPLE_COUNT = 5; f32 checkSamples[CHECK_SAMPLE_COUNT] = { 1. / 6, 2. / 6, 3. / 6, 4. / 6, 5. / 6 }; f32 d2LowBound = oc_square(0.5 * width - tolerance); f32 d2HighBound = oc_square(0.5 * width + tolerance); f32 maxOvershoot = 0; f32 maxOvershootParameter = 0; for(int i = 0; i < CHECK_SAMPLE_COUNT; i++) { f32 t = checkSamples[i]; oc_vec2 c = oc_cubic_get_point(p, t); oc_vec2 cp = oc_cubic_get_point(leftHull, t); oc_vec2 cn = oc_cubic_get_point(rightHull, t); f32 positiveDistSquare = oc_square(c.x - cp.x) + oc_square(c.y - cp.y); f32 negativeDistSquare = oc_square(c.x - cn.x) + oc_square(c.y - cn.y); f32 positiveOvershoot = oc_max(positiveDistSquare - d2HighBound, d2LowBound - positiveDistSquare); f32 negativeOvershoot = oc_max(negativeDistSquare - d2HighBound, d2LowBound - negativeDistSquare); f32 overshoot = oc_max(positiveOvershoot, negativeOvershoot); if(overshoot > maxOvershoot) { maxOvershoot = overshoot; maxOvershootParameter = t; } } if(maxOvershoot > 0) { oc_vec2 splitLeft[4]; oc_vec2 splitRight[4]; oc_cubic_split(p, maxOvershootParameter, splitLeft, splitRight); oc_mtl_render_stroke_cubic(backend, splitLeft); oc_mtl_render_stroke_cubic(backend, splitRight); } else { oc_vec2 tmp = leftHull[0]; leftHull[0] = leftHull[3]; leftHull[3] = tmp; tmp = leftHull[1]; leftHull[1] = leftHull[2]; leftHull[2] = tmp; oc_mtl_canvas_encode_element(backend, OC_PATH_CUBIC, rightHull); oc_mtl_canvas_encode_element(backend, OC_PATH_CUBIC, leftHull); oc_vec2 joint0[2] = { rightHull[3], leftHull[0] }; oc_vec2 joint1[2] = { leftHull[3], rightHull[0] }; oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, joint0); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, joint1); } } } void oc_mtl_render_stroke_element(oc_mtl_canvas_backend* backend, oc_path_elt* element, oc_vec2 currentPoint, oc_vec2* startTangent, oc_vec2* endTangent, oc_vec2* endPoint) { oc_vec2 controlPoints[4] = { currentPoint, element->p[0], element->p[1], element->p[2] }; int endPointIndex = 0; switch(element->type) { case OC_PATH_LINE: oc_mtl_render_stroke_line(backend, controlPoints); endPointIndex = 1; break; case OC_PATH_QUADRATIC: oc_mtl_render_stroke_quadratic(backend, controlPoints); endPointIndex = 2; break; case OC_PATH_CUBIC: oc_mtl_render_stroke_cubic(backend, controlPoints); endPointIndex = 3; break; case OC_PATH_MOVE: OC_ASSERT(0, "should be unreachable"); break; } //NOTE: ensure tangents are properly computed even in presence of coincident points //TODO: see if we can do this in a less hacky way for(int i = 1; i < 4; i++) { if(controlPoints[i].x != controlPoints[0].x || controlPoints[i].y != controlPoints[0].y) { *startTangent = (oc_vec2){ .x = controlPoints[i].x - controlPoints[0].x, .y = controlPoints[i].y - controlPoints[0].y }; break; } } *endPoint = controlPoints[endPointIndex]; for(int i = endPointIndex - 1; i >= 0; i++) { if(controlPoints[i].x != endPoint->x || controlPoints[i].y != endPoint->y) { *endTangent = (oc_vec2){ .x = endPoint->x - controlPoints[i].x, .y = endPoint->y - controlPoints[i].y }; break; } } OC_DEBUG_ASSERT(startTangent->x != 0 || startTangent->y != 0); } void oc_mtl_stroke_cap(oc_mtl_canvas_backend* backend, oc_vec2 p0, oc_vec2 direction) { oc_attributes* attributes = &backend->primitive->attributes; //NOTE(martin): compute the tangent and normal vectors (multiplied by half width) at the cap point f32 dn = sqrt(oc_square(direction.x) + oc_square(direction.y)); f32 alpha = 0.5 * attributes->width / dn; oc_vec2 n0 = { -alpha * direction.y, alpha * direction.x }; oc_vec2 m0 = { alpha * direction.x, alpha * direction.y }; oc_vec2 points[] = { { p0.x + n0.x, p0.y + n0.y }, { p0.x + n0.x + m0.x, p0.y + n0.y + m0.y }, { p0.x - n0.x + m0.x, p0.y - n0.y + m0.y }, { p0.x - n0.x, p0.y - n0.y }, { p0.x + n0.x, p0.y + n0.y } }; oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 1); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 2); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 3); } void oc_mtl_stroke_joint(oc_mtl_canvas_backend* backend, oc_vec2 p0, oc_vec2 t0, oc_vec2 t1) { oc_attributes* attributes = &backend->primitive->attributes; //NOTE(martin): compute the normals at the joint point f32 norm_t0 = sqrt(oc_square(t0.x) + oc_square(t0.y)); f32 norm_t1 = sqrt(oc_square(t1.x) + oc_square(t1.y)); oc_vec2 n0 = { -t0.y, t0.x }; n0.x /= norm_t0; n0.y /= norm_t0; oc_vec2 n1 = { -t1.y, t1.x }; n1.x /= norm_t1; n1.y /= norm_t1; //NOTE(martin): the sign of the cross product determines if the normals are facing outwards or inwards the angle. // we flip them to face outwards if needed f32 crossZ = n0.x * n1.y - n0.y * n1.x; if(crossZ > 0) { n0.x *= -1; n0.y *= -1; n1.x *= -1; n1.y *= -1; } //NOTE(martin): use the same code as hull offset to find mitter point... /*NOTE(martin): let vector u = (n0+n1) and vector v = pIntersect - p1 then v = u * (2*offset / norm(u)^2) (this can be derived from writing the pythagoras theorems in the triangles of the joint) */ f32 halfW = 0.5 * attributes->width; oc_vec2 u = { n0.x + n1.x, n0.y + n1.y }; f32 uNormSquare = u.x * u.x + u.y * u.y; f32 alpha = attributes->width / uNormSquare; oc_vec2 v = { u.x * alpha, u.y * alpha }; f32 excursionSquare = uNormSquare * oc_square(alpha - attributes->width / 4); if(attributes->joint == OC_JOINT_MITER && excursionSquare <= oc_square(attributes->maxJointExcursion)) { //NOTE(martin): add a mitter joint oc_vec2 points[] = { p0, { p0.x + n0.x * halfW, p0.y + n0.y * halfW }, { p0.x + v.x, p0.y + v.y }, { p0.x + n1.x * halfW, p0.y + n1.y * halfW }, p0 }; oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 1); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 2); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 3); } else { //NOTE(martin): add a bevel joint oc_vec2 points[] = { p0, { p0.x + n0.x * halfW, p0.y + n0.y * halfW }, { p0.x + n1.x * halfW, p0.y + n1.y * halfW }, p0 }; oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 1); oc_mtl_canvas_encode_element(backend, OC_PATH_LINE, points + 2); } } u32 oc_mtl_render_stroke_subpath(oc_mtl_canvas_backend* backend, oc_path_elt* elements, oc_path_descriptor* path, u32 startIndex, oc_vec2 startPoint) { u32 eltCount = path->count; OC_DEBUG_ASSERT(startIndex < eltCount); oc_vec2 currentPoint = startPoint; oc_vec2 endPoint = { 0, 0 }; oc_vec2 previousEndTangent = { 0, 0 }; oc_vec2 firstTangent = { 0, 0 }; oc_vec2 startTangent = { 0, 0 }; oc_vec2 endTangent = { 0, 0 }; //NOTE(martin): render first element and compute first tangent oc_mtl_render_stroke_element(backend, elements + startIndex, currentPoint, &startTangent, &endTangent, &endPoint); firstTangent = startTangent; previousEndTangent = endTangent; currentPoint = endPoint; //NOTE(martin): render subsequent elements along with their joints oc_attributes* attributes = &backend->primitive->attributes; u32 eltIndex = startIndex + 1; for(; eltIndex < eltCount && elements[eltIndex].type != OC_PATH_MOVE; eltIndex++) { oc_mtl_render_stroke_element(backend, elements + eltIndex, currentPoint, &startTangent, &endTangent, &endPoint); if(attributes->joint != OC_JOINT_NONE) { oc_mtl_stroke_joint(backend, currentPoint, previousEndTangent, startTangent); } previousEndTangent = endTangent; currentPoint = endPoint; } u32 subPathEltCount = eltIndex - startIndex; //NOTE(martin): draw end cap / joint. We ensure there's at least two segments to draw a closing joint if(subPathEltCount > 1 && startPoint.x == endPoint.x && startPoint.y == endPoint.y) { if(attributes->joint != OC_JOINT_NONE) { //NOTE(martin): add a closing joint if the path is closed oc_mtl_stroke_joint(backend, endPoint, endTangent, firstTangent); } } else if(attributes->cap == OC_CAP_SQUARE) { //NOTE(martin): add start and end cap oc_mtl_stroke_cap(backend, startPoint, (oc_vec2){ -startTangent.x, -startTangent.y }); oc_mtl_stroke_cap(backend, endPoint, endTangent); } return (eltIndex); } void oc_mtl_render_stroke(oc_mtl_canvas_backend* backend, oc_path_elt* elements, oc_path_descriptor* path) { u32 eltCount = path->count; OC_DEBUG_ASSERT(eltCount); oc_vec2 startPoint = path->startPoint; u32 startIndex = 0; while(startIndex < eltCount) { //NOTE(martin): eliminate leading moves while(startIndex < eltCount && elements[startIndex].type == OC_PATH_MOVE) { startPoint = elements[startIndex].p[0]; startIndex++; } if(startIndex < eltCount) { startIndex = oc_mtl_render_stroke_subpath(backend, elements, path, startIndex, startPoint); } } } void oc_mtl_grow_buffer_if_needed(oc_mtl_canvas_backend* backend, id* buffer, u64 wantedSize) { u64 bufferSize = [(*buffer) length]; if(bufferSize < wantedSize) { int newSize = wantedSize * 1.2; @autoreleasepool { //NOTE: MTLBuffers are retained by the command buffer, so we don't risk deallocating while the buffer is in use [*buffer release]; *buffer = nil; id device = backend->surface->device; MTLResourceOptions bufferOptions = MTLResourceStorageModePrivate; *buffer = [device newBufferWithLength:newSize options:bufferOptions]; } } } void oc_mtl_render_batch(oc_mtl_canvas_backend* backend, oc_mtl_surface* surface, oc_image* images, int tileSize, int nTilesX, int nTilesY, oc_vec2 viewportSize, f32 scale) { int pathBufferOffset = backend->pathBatchStart * sizeof(oc_mtl_path); int elementBufferOffset = backend->eltBatchStart * sizeof(oc_mtl_path_elt); int pathCount = backend->pathCount - backend->pathBatchStart; int eltCount = backend->eltCount - backend->eltBatchStart; if(!pathCount || !eltCount) { return; } //NOTE: update intermediate buffers sizes if needed oc_mtl_grow_buffer_if_needed(backend, &backend->pathQueueBuffer, pathCount * sizeof(oc_mtl_path_queue)); oc_mtl_grow_buffer_if_needed(backend, &backend->tileQueueBuffer, backend->maxTileQueueCount * sizeof(oc_mtl_tile_queue)); oc_mtl_grow_buffer_if_needed(backend, &backend->segmentBuffer, backend->maxSegmentCount * sizeof(oc_mtl_segment)); oc_mtl_grow_buffer_if_needed(backend, &backend->screenTilesBuffer, nTilesX * nTilesY * sizeof(oc_mtl_screen_tile)); oc_mtl_grow_buffer_if_needed(backend, &backend->tileOpBuffer, backend->maxSegmentCount * 30 * sizeof(oc_mtl_tile_op)); //NOTE: encode GPU commands @autoreleasepool { //NOTE: clear output texture MTLRenderPassDescriptor* clearDescriptor = [MTLRenderPassDescriptor renderPassDescriptor]; clearDescriptor.colorAttachments[0].texture = backend->outTexture; clearDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear; clearDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(0, 0, 0, 0); clearDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore; id clearEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:clearDescriptor]; clearEncoder.label = @"clear out texture pass"; [clearEncoder endEncoding]; //NOTE: clear counters id blitEncoder = [surface->commandBuffer blitCommandEncoder]; blitEncoder.label = @"clear counters"; [blitEncoder fillBuffer:backend->segmentCountBuffer range:NSMakeRange(0, sizeof(int)) value:0]; [blitEncoder fillBuffer:backend->tileQueueCountBuffer range:NSMakeRange(0, sizeof(int)) value:0]; [blitEncoder fillBuffer:backend->tileOpCountBuffer range:NSMakeRange(0, sizeof(int)) value:0]; [blitEncoder fillBuffer:backend->rasterDispatchBuffer range:NSMakeRange(0, sizeof(MTLDispatchThreadgroupsIndirectArguments)) value:0]; [blitEncoder endEncoding]; //NOTE: path setup pass id pathEncoder = [surface->commandBuffer computeCommandEncoder]; pathEncoder.label = @"path pass"; [pathEncoder setComputePipelineState:backend->pathPipeline]; int tileQueueMax = [backend->tileQueueBuffer length] / sizeof(oc_mtl_tile_queue); [pathEncoder setBytes:&pathCount length:sizeof(int) atIndex:0]; [pathEncoder setBuffer:backend->pathBuffer[backend->bufferIndex] offset:pathBufferOffset atIndex:1]; [pathEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:2]; [pathEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:3]; [pathEncoder setBuffer:backend->tileQueueCountBuffer offset:0 atIndex:4]; [pathEncoder setBytes:&tileQueueMax length:sizeof(int) atIndex:5]; [pathEncoder setBytes:&tileSize length:sizeof(int) atIndex:6]; [pathEncoder setBytes:&scale length:sizeof(int) atIndex:7]; MTLSize pathGridSize = MTLSizeMake(pathCount, 1, 1); MTLSize pathGroupSize = MTLSizeMake([backend->pathPipeline maxTotalThreadsPerThreadgroup], 1, 1); [pathEncoder dispatchThreads:pathGridSize threadsPerThreadgroup:pathGroupSize]; [pathEncoder endEncoding]; //NOTE: segment setup pass id segmentEncoder = [surface->commandBuffer computeCommandEncoder]; segmentEncoder.label = @"segment pass"; [segmentEncoder setComputePipelineState:backend->segmentPipeline]; int tileOpMax = [backend->tileOpBuffer length] / sizeof(oc_mtl_tile_op); int segmentMax = [backend->segmentBuffer length] / sizeof(oc_mtl_segment); [segmentEncoder setBytes:&eltCount length:sizeof(int) atIndex:0]; [segmentEncoder setBuffer:backend->elementBuffer[backend->bufferIndex] offset:elementBufferOffset atIndex:1]; [segmentEncoder setBuffer:backend->segmentCountBuffer offset:0 atIndex:2]; [segmentEncoder setBuffer:backend->segmentBuffer offset:0 atIndex:3]; [segmentEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:4]; [segmentEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:5]; [segmentEncoder setBuffer:backend->tileOpBuffer offset:0 atIndex:6]; [segmentEncoder setBuffer:backend->tileOpCountBuffer offset:0 atIndex:7]; [segmentEncoder setBytes:&tileOpMax length:sizeof(int) atIndex:8]; [segmentEncoder setBytes:&segmentMax length:sizeof(int) atIndex:9]; [segmentEncoder setBytes:&tileSize length:sizeof(int) atIndex:10]; [segmentEncoder setBytes:&scale length:sizeof(int) atIndex:11]; [segmentEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:12]; [segmentEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:13]; MTLSize segmentGridSize = MTLSizeMake(eltCount, 1, 1); MTLSize segmentGroupSize = MTLSizeMake([backend->segmentPipeline maxTotalThreadsPerThreadgroup], 1, 1); [segmentEncoder dispatchThreads:segmentGridSize threadsPerThreadgroup:segmentGroupSize]; [segmentEncoder endEncoding]; //NOTE: backprop pass id backpropEncoder = [surface->commandBuffer computeCommandEncoder]; backpropEncoder.label = @"backprop pass"; [backpropEncoder setComputePipelineState:backend->backpropPipeline]; [backpropEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:0]; [backpropEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:1]; [backpropEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:2]; [backpropEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:3]; MTLSize backpropGroupSize = MTLSizeMake([backend->backpropPipeline maxTotalThreadsPerThreadgroup], 1, 1); MTLSize backpropGridSize = MTLSizeMake(pathCount * backpropGroupSize.width, 1, 1); [backpropEncoder dispatchThreads:backpropGridSize threadsPerThreadgroup:backpropGroupSize]; [backpropEncoder endEncoding]; //NOTE: merge pass id mergeEncoder = [surface->commandBuffer computeCommandEncoder]; mergeEncoder.label = @"merge pass"; [mergeEncoder setComputePipelineState:backend->mergePipeline]; [mergeEncoder setBytes:&pathCount length:sizeof(int) atIndex:0]; [mergeEncoder setBuffer:backend->pathBuffer[backend->bufferIndex] offset:pathBufferOffset atIndex:1]; [mergeEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:2]; [mergeEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:3]; [mergeEncoder setBuffer:backend->tileOpBuffer offset:0 atIndex:4]; [mergeEncoder setBuffer:backend->tileOpCountBuffer offset:0 atIndex:5]; [mergeEncoder setBuffer:backend->rasterDispatchBuffer offset:0 atIndex:6]; [mergeEncoder setBuffer:backend->screenTilesBuffer offset:0 atIndex:7]; [mergeEncoder setBytes:&tileOpMax length:sizeof(int) atIndex:8]; [mergeEncoder setBytes:&tileSize length:sizeof(int) atIndex:9]; [mergeEncoder setBytes:&scale length:sizeof(float) atIndex:10]; [mergeEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:11]; [mergeEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:12]; MTLSize mergeGridSize = MTLSizeMake(nTilesX, nTilesY, 1); MTLSize mergeGroupSize = MTLSizeMake(OC_MTL_TILE_SIZE, OC_MTL_TILE_SIZE, 1); [mergeEncoder dispatchThreads:mergeGridSize threadsPerThreadgroup:mergeGroupSize]; [mergeEncoder endEncoding]; //NOTE: raster pass id rasterEncoder = [surface->commandBuffer computeCommandEncoder]; rasterEncoder.label = @"raster pass"; [rasterEncoder setComputePipelineState:backend->rasterPipeline]; [rasterEncoder setBuffer:backend->screenTilesBuffer offset:0 atIndex:0]; [rasterEncoder setBuffer:backend->tileOpBuffer offset:0 atIndex:1]; [rasterEncoder setBuffer:backend->pathBuffer[backend->bufferIndex] offset:pathBufferOffset atIndex:2]; [rasterEncoder setBuffer:backend->segmentBuffer offset:0 atIndex:3]; [rasterEncoder setBytes:&tileSize length:sizeof(int) atIndex:4]; [rasterEncoder setBytes:&scale length:sizeof(float) atIndex:5]; [rasterEncoder setBytes:&backend->msaaCount length:sizeof(int) atIndex:6]; [rasterEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:7]; [rasterEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:8]; [rasterEncoder setTexture:backend->outTexture atIndex:0]; for(int i = 0; i < OC_MTL_MAX_IMAGES_PER_BATCH; i++) { if(images[i].h) { oc_mtl_image_data* image = (oc_mtl_image_data*)oc_image_data_from_handle(images[i]); if(image) { [rasterEncoder setTexture:image->texture atIndex:1 + i]; } } } MTLSize rasterGridSize = MTLSizeMake(viewportSize.x, viewportSize.y, 1); MTLSize rasterGroupSize = MTLSizeMake(OC_MTL_TILE_SIZE, OC_MTL_TILE_SIZE, 1); [rasterEncoder dispatchThreadgroupsWithIndirectBuffer:backend->rasterDispatchBuffer indirectBufferOffset:0 threadsPerThreadgroup:rasterGroupSize]; [rasterEncoder endEncoding]; //NOTE: blit pass MTLViewport viewport = { 0, 0, viewportSize.x, viewportSize.y, 0, 1 }; MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor]; renderPassDescriptor.colorAttachments[0].texture = surface->drawable.texture; renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionLoad; renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore; id renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor]; renderEncoder.label = @"blit pass"; [renderEncoder setViewport:viewport]; [renderEncoder setRenderPipelineState:backend->blitPipeline]; [renderEncoder setFragmentTexture:backend->outTexture atIndex:0]; [renderEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:3]; [renderEncoder endEncoding]; } backend->pathBatchStart = backend->pathCount; backend->eltBatchStart = backend->eltCount; backend->maxSegmentCount = 0; backend->maxTileQueueCount = 0; } void oc_mtl_canvas_resize(oc_mtl_canvas_backend* backend, oc_vec2 size) { @autoreleasepool { if(backend->screenTilesBuffer) { [backend->screenTilesBuffer release]; backend->screenTilesBuffer = nil; } int tileSize = OC_MTL_TILE_SIZE; int nTilesX = (int)(size.x + tileSize - 1) / tileSize; int nTilesY = (int)(size.y + tileSize - 1) / tileSize; MTLResourceOptions bufferOptions = MTLResourceStorageModePrivate; backend->screenTilesBuffer = [backend->surface->device newBufferWithLength:nTilesX * nTilesY * sizeof(oc_mtl_screen_tile) options:bufferOptions]; if(backend->outTexture) { [backend->outTexture release]; backend->outTexture = nil; } MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init]; texDesc.textureType = MTLTextureType2D; texDesc.storageMode = MTLStorageModePrivate; texDesc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite | MTLTextureUsageRenderTarget; texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm; texDesc.width = size.x; texDesc.height = size.y; backend->outTexture = [backend->surface->device newTextureWithDescriptor:texDesc]; backend->surface->mtlLayer.drawableSize = (CGSize){ size.x, size.y }; backend->frameSize = size; } } void oc_mtl_canvas_render(oc_canvas_backend* interface, oc_color clearColor, u32 primitiveCount, oc_primitive* primitives, u32 eltCount, oc_path_elt* pathElements) { oc_mtl_canvas_backend* backend = (oc_mtl_canvas_backend*)interface; //NOTE: update rolling input buffers dispatch_semaphore_wait(backend->bufferSemaphore, DISPATCH_TIME_FOREVER); backend->bufferIndex = (backend->bufferIndex + 1) % OC_MTL_INPUT_BUFFERS_COUNT; //NOTE: ensure screen tiles buffer is correct size oc_mtl_surface* surface = backend->surface; oc_vec2 frameSize = surface->interface.getSize((oc_surface_data*)surface); f32 scale = surface->mtlLayer.contentsScale; oc_vec2 viewportSize = { frameSize.x * scale, frameSize.y * scale }; int tileSize = OC_MTL_TILE_SIZE; int nTilesX = (int)(viewportSize.x * scale + tileSize - 1) / tileSize; int nTilesY = (int)(viewportSize.y * scale + tileSize - 1) / tileSize; if(viewportSize.x != backend->frameSize.x || viewportSize.y != backend->frameSize.y) { oc_mtl_canvas_resize(backend, viewportSize); } //NOTE: acquire metal resources for rendering oc_mtl_surface_acquire_command_buffer(surface); oc_mtl_surface_acquire_drawable(surface); @autoreleasepool { //NOTE: clear log counter id blitEncoder = [surface->commandBuffer blitCommandEncoder]; blitEncoder.label = @"clear log counter"; [blitEncoder fillBuffer:backend->logOffsetBuffer[backend->bufferIndex] range:NSMakeRange(0, sizeof(int)) value:0]; [blitEncoder endEncoding]; //NOTE: clear screen MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor]; renderPassDescriptor.colorAttachments[0].texture = surface->drawable.texture; renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear; renderPassDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(clearColor.r, clearColor.g, clearColor.b, clearColor.a); renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore; id renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor]; renderEncoder.label = @"clear pass"; [renderEncoder endEncoding]; } backend->pathCount = 0; backend->pathBatchStart = 0; backend->eltCount = 0; backend->eltBatchStart = 0; backend->maxSegmentCount = 0; backend->maxTileQueueCount = 0; //NOTE: encode and render batches oc_vec2 currentPos = { 0 }; oc_image images[OC_MTL_MAX_IMAGES_PER_BATCH] = { 0 }; int imageCount = 0; for(int primitiveIndex = 0; primitiveIndex < primitiveCount; primitiveIndex++) { oc_primitive* primitive = &primitives[primitiveIndex]; if(primitive->attributes.image.h != 0) { backend->currentImageIndex = -1; for(int i = 0; i < imageCount; i++) { if(images[i].h == primitive->attributes.image.h) { backend->currentImageIndex = i; } } if(backend->currentImageIndex <= 0) { if(imageCount < OC_MTL_MAX_IMAGES_PER_BATCH) { images[imageCount] = primitive->attributes.image; backend->currentImageIndex = imageCount; imageCount++; } else { oc_mtl_render_batch(backend, surface, images, tileSize, nTilesX, nTilesY, viewportSize, scale); images[0] = primitive->attributes.image; backend->currentImageIndex = 0; imageCount = 1; } } } else { backend->currentImageIndex = -1; } if(primitive->path.count) { backend->primitive = primitive; backend->pathScreenExtents = (oc_vec4){ FLT_MAX, FLT_MAX, -FLT_MAX, -FLT_MAX }; backend->pathUserExtents = (oc_vec4){ FLT_MAX, FLT_MAX, -FLT_MAX, -FLT_MAX }; if(primitive->cmd == OC_CMD_STROKE) { oc_mtl_render_stroke(backend, pathElements + primitive->path.startIndex, &primitive->path); } else { for(int eltIndex = 0; (eltIndex < primitive->path.count) && (primitive->path.startIndex + eltIndex < eltCount); eltIndex++) { oc_path_elt* elt = &pathElements[primitive->path.startIndex + eltIndex]; if(elt->type != OC_PATH_MOVE) { oc_vec2 p[4] = { currentPos, elt->p[0], elt->p[1], elt->p[2] }; oc_mtl_canvas_encode_element(backend, elt->type, p); } switch(elt->type) { case OC_PATH_MOVE: currentPos = elt->p[0]; break; case OC_PATH_LINE: currentPos = elt->p[0]; break; case OC_PATH_QUADRATIC: currentPos = elt->p[1]; break; case OC_PATH_CUBIC: currentPos = elt->p[2]; break; } } } //NOTE: encode path oc_mtl_encode_path(backend, primitive, scale); } } oc_mtl_render_batch(backend, surface, images, tileSize, nTilesX, nTilesY, viewportSize, scale); @autoreleasepool { //NOTE: finalize [surface->commandBuffer addCompletedHandler:^(id commandBuffer) { oc_mtl_print_log(backend->bufferIndex, backend->logBuffer[backend->bufferIndex], backend->logOffsetBuffer[backend->bufferIndex]); dispatch_semaphore_signal(backend->bufferSemaphore); }]; } } void oc_mtl_canvas_destroy(oc_canvas_backend* interface) { oc_mtl_canvas_backend* backend = (oc_mtl_canvas_backend*)interface; @autoreleasepool { [backend->pathPipeline release]; [backend->segmentPipeline release]; [backend->backpropPipeline release]; [backend->mergePipeline release]; [backend->rasterPipeline release]; [backend->blitPipeline release]; for(int i = 0; i < OC_MTL_INPUT_BUFFERS_COUNT; i++) { [backend->pathBuffer[i] release]; [backend->elementBuffer[i] release]; [backend->logBuffer[i] release]; [backend->logOffsetBuffer[i] release]; } [backend->segmentCountBuffer release]; [backend->segmentBuffer release]; [backend->tileQueueBuffer release]; [backend->tileQueueCountBuffer release]; [backend->tileOpBuffer release]; [backend->tileOpCountBuffer release]; [backend->screenTilesBuffer release]; } free(backend); } oc_image_data* oc_mtl_canvas_image_create(oc_canvas_backend* interface, oc_vec2 size) { oc_mtl_image_data* image = 0; oc_mtl_canvas_backend* backend = (oc_mtl_canvas_backend*)interface; oc_mtl_surface* surface = backend->surface; @autoreleasepool { image = oc_malloc_type(oc_mtl_image_data); if(image) { MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init]; texDesc.textureType = MTLTextureType2D; texDesc.storageMode = MTLStorageModeManaged; texDesc.usage = MTLTextureUsageShaderRead; texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm; texDesc.width = size.x; texDesc.height = size.y; image->texture = [surface->device newTextureWithDescriptor:texDesc]; if(image->texture != nil) { [image->texture retain]; image->interface.size = size; } else { free(image); image = 0; } } } return ((oc_image_data*)image); } void oc_mtl_canvas_image_destroy(oc_canvas_backend* backendInterface, oc_image_data* imageInterface) { oc_mtl_image_data* image = (oc_mtl_image_data*)imageInterface; @autoreleasepool { [image->texture release]; free(image); } } void oc_mtl_canvas_image_upload_region(oc_canvas_backend* backendInterface, oc_image_data* imageInterface, oc_rect region, u8* pixels) { @autoreleasepool { oc_mtl_image_data* image = (oc_mtl_image_data*)imageInterface; MTLRegion mtlRegion = MTLRegionMake2D(region.x, region.y, region.w, region.h); [image->texture replaceRegion:mtlRegion mipmapLevel:0 withBytes:(void*)pixels bytesPerRow:4 * region.w]; } } const u32 OC_MTL_DEFAULT_PATH_BUFFER_LEN = (4 << 10), OC_MTL_DEFAULT_ELT_BUFFER_LEN = (4 << 10), OC_MTL_DEFAULT_SEGMENT_BUFFER_LEN = (4 << 10), OC_MTL_DEFAULT_PATH_QUEUE_BUFFER_LEN = (4 << 10), OC_MTL_DEFAULT_TILE_QUEUE_BUFFER_LEN = (4 << 10), OC_MTL_DEFAULT_TILE_OP_BUFFER_LEN = (4 << 20); oc_canvas_backend* oc_mtl_canvas_backend_create(oc_mtl_surface* surface) { oc_mtl_canvas_backend* backend = 0; backend = oc_malloc_type(oc_mtl_canvas_backend); memset(backend, 0, sizeof(oc_mtl_canvas_backend)); backend->msaaCount = OC_MTL_MSAA_COUNT; backend->surface = surface; //NOTE(martin): setup interface functions backend->interface.destroy = oc_mtl_canvas_destroy; backend->interface.render = oc_mtl_canvas_render; backend->interface.imageCreate = oc_mtl_canvas_image_create; backend->interface.imageDestroy = oc_mtl_canvas_image_destroy; backend->interface.imageUploadRegion = oc_mtl_canvas_image_upload_region; @autoreleasepool { //NOTE: load metal library oc_str8 shaderPath = oc_path_executable_relative(oc_scratch(), OC_STR8("mtl_renderer.metallib")); NSString* metalFileName = [[NSString alloc] initWithBytes:shaderPath.ptr length:shaderPath.len encoding:NSUTF8StringEncoding]; NSError* err = 0; id library = [surface->device newLibraryWithFile:metalFileName error:&err]; if(err != nil) { const char* errStr = [[err localizedDescription] UTF8String]; oc_log_error("error : %s\n", errStr); return (0); } id pathFunction = [library newFunctionWithName:@"mtl_path_setup"]; id segmentFunction = [library newFunctionWithName:@"mtl_segment_setup"]; id backpropFunction = [library newFunctionWithName:@"mtl_backprop"]; id mergeFunction = [library newFunctionWithName:@"mtl_merge"]; id rasterFunction = [library newFunctionWithName:@"mtl_raster"]; id vertexFunction = [library newFunctionWithName:@"mtl_vertex_shader"]; id fragmentFunction = [library newFunctionWithName:@"mtl_fragment_shader"]; //NOTE: create pipelines NSError* error = NULL; backend->pathPipeline = [surface->device newComputePipelineStateWithFunction:pathFunction error:&error]; backend->segmentPipeline = [surface->device newComputePipelineStateWithFunction:segmentFunction error:&error]; backend->backpropPipeline = [surface->device newComputePipelineStateWithFunction:backpropFunction error:&error]; backend->mergePipeline = [surface->device newComputePipelineStateWithFunction:mergeFunction error:&error]; backend->rasterPipeline = [surface->device newComputePipelineStateWithFunction:rasterFunction error:&error]; MTLRenderPipelineDescriptor* pipelineStateDescriptor = [[MTLRenderPipelineDescriptor alloc] init]; pipelineStateDescriptor.label = @"blit pipeline"; pipelineStateDescriptor.vertexFunction = vertexFunction; pipelineStateDescriptor.fragmentFunction = fragmentFunction; pipelineStateDescriptor.colorAttachments[0].pixelFormat = surface->mtlLayer.pixelFormat; pipelineStateDescriptor.colorAttachments[0].blendingEnabled = YES; pipelineStateDescriptor.colorAttachments[0].rgbBlendOperation = MTLBlendOperationAdd; pipelineStateDescriptor.colorAttachments[0].sourceRGBBlendFactor = MTLBlendFactorOne; pipelineStateDescriptor.colorAttachments[0].destinationRGBBlendFactor = MTLBlendFactorOneMinusSourceAlpha; pipelineStateDescriptor.colorAttachments[0].alphaBlendOperation = MTLBlendOperationAdd; pipelineStateDescriptor.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorOne; pipelineStateDescriptor.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorOneMinusSourceAlpha; backend->blitPipeline = [surface->device newRenderPipelineStateWithDescriptor:pipelineStateDescriptor error:&err]; //NOTE: create textures oc_vec2 size = surface->interface.getSize((oc_surface_data*)surface); f32 scale = surface->mtlLayer.contentsScale; backend->frameSize = (oc_vec2){ size.x * scale, size.y * scale }; MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init]; texDesc.textureType = MTLTextureType2D; texDesc.storageMode = MTLStorageModePrivate; texDesc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite | MTLTextureUsageRenderTarget; texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm; texDesc.width = backend->frameSize.x; texDesc.height = backend->frameSize.y; backend->outTexture = [surface->device newTextureWithDescriptor:texDesc]; //NOTE: create buffers backend->bufferSemaphore = dispatch_semaphore_create(OC_MTL_INPUT_BUFFERS_COUNT); backend->bufferIndex = 0; MTLResourceOptions bufferOptions = MTLResourceCPUCacheModeWriteCombined | MTLResourceStorageModeShared; for(int i = 0; i < OC_MTL_INPUT_BUFFERS_COUNT; i++) { backend->pathBuffer[i] = [surface->device newBufferWithLength:OC_MTL_DEFAULT_PATH_BUFFER_LEN * sizeof(oc_mtl_path) options:bufferOptions]; backend->elementBuffer[i] = [surface->device newBufferWithLength:OC_MTL_DEFAULT_ELT_BUFFER_LEN * sizeof(oc_mtl_path_elt) options:bufferOptions]; } bufferOptions = MTLResourceStorageModePrivate; backend->segmentBuffer = [surface->device newBufferWithLength:OC_MTL_DEFAULT_SEGMENT_BUFFER_LEN * sizeof(oc_mtl_segment) options:bufferOptions]; backend->segmentCountBuffer = [surface->device newBufferWithLength:sizeof(int) options:bufferOptions]; backend->pathQueueBuffer = [surface->device newBufferWithLength:OC_MTL_DEFAULT_PATH_QUEUE_BUFFER_LEN * sizeof(oc_mtl_path_queue) options:bufferOptions]; backend->tileQueueBuffer = [surface->device newBufferWithLength:OC_MTL_DEFAULT_TILE_QUEUE_BUFFER_LEN * sizeof(oc_mtl_tile_queue) options:bufferOptions]; backend->tileQueueCountBuffer = [surface->device newBufferWithLength:sizeof(int) options:bufferOptions]; backend->tileOpBuffer = [surface->device newBufferWithLength:OC_MTL_DEFAULT_TILE_OP_BUFFER_LEN * sizeof(oc_mtl_tile_op) options:bufferOptions]; backend->tileOpCountBuffer = [surface->device newBufferWithLength:sizeof(int) options:bufferOptions]; backend->rasterDispatchBuffer = [surface->device newBufferWithLength:sizeof(MTLDispatchThreadgroupsIndirectArguments) options:bufferOptions]; int tileSize = OC_MTL_TILE_SIZE; int nTilesX = (int)(backend->frameSize.x + tileSize - 1) / tileSize; int nTilesY = (int)(backend->frameSize.y + tileSize - 1) / tileSize; backend->screenTilesBuffer = [surface->device newBufferWithLength:nTilesX * nTilesY * sizeof(oc_mtl_screen_tile) options:bufferOptions]; bufferOptions = MTLResourceStorageModeShared; for(int i = 0; i < OC_MTL_INPUT_BUFFERS_COUNT; i++) { backend->logBuffer[i] = [surface->device newBufferWithLength:1 << 20 options:bufferOptions]; backend->logOffsetBuffer[i] = [surface->device newBufferWithLength:sizeof(int) options:bufferOptions]; } } return ((oc_canvas_backend*)backend); } oc_surface_data* oc_mtl_canvas_surface_create_for_window(oc_window window) { oc_mtl_surface* surface = (oc_mtl_surface*)oc_mtl_surface_create_for_window(window); if(surface) { surface->interface.backend = oc_mtl_canvas_backend_create(surface); if(surface->interface.backend) { surface->interface.api = OC_CANVAS; } else { surface->interface.destroy((oc_surface_data*)surface); surface = 0; } } return ((oc_surface_data*)surface); }