/************************************************************//** * * @file: mtl_canvas.m * @author: Martin Fouilleul * @date: 12/07/2020 * @revision: 24/01/2023 * *****************************************************************/ #import #import #include #include"graphics_surface.h" #include"macro_helpers.h" #include"osx_app.h" #include"mtl_renderer.h" const int MG_MTL_INPUT_BUFFERS_COUNT = 3, MG_MTL_TILE_SIZE = 32, MG_MTL_MSAA_COUNT = 8; typedef struct mg_mtl_canvas_backend { mg_canvas_backend interface; mg_mtl_surface* surface; id pathPipeline; id segmentPipeline; id backpropPipeline; id mergePipeline; id rasterPipeline; id blitPipeline; id outTexture; int bufferIndex; dispatch_semaphore_t bufferSemaphore; id pathBuffer[MG_MTL_INPUT_BUFFERS_COUNT]; id elementBuffer[MG_MTL_INPUT_BUFFERS_COUNT]; id logBuffer[MG_MTL_INPUT_BUFFERS_COUNT]; id logOffsetBuffer[MG_MTL_INPUT_BUFFERS_COUNT]; id segmentCountBuffer; id segmentBuffer; id pathQueueBuffer; id tileQueueBuffer; id tileQueueCountBuffer; id tileOpBuffer; id tileOpCountBuffer; id screenTilesBuffer; id rasterDispatchBuffer; int msaaCount; vec2 frameSize; // encoding context int eltCap; int eltCount; int eltBatchStart; int pathCap; int pathCount; int pathBatchStart; mg_primitive* primitive; vec4 pathScreenExtents; vec4 pathUserExtents; int maxTileQueueCount; int maxSegmentCount; } mg_mtl_canvas_backend; typedef struct mg_mtl_image_data { mg_image_data interface; id texture; } mg_mtl_image_data; void mg_mtl_print_log(int bufferIndex, id logBuffer, id logOffsetBuffer) { char* log = [logBuffer contents]; int size = *(int*)[logOffsetBuffer contents]; if(size) { log_info("Log from buffer %i:\n", bufferIndex); int index = 0; while(index < size) { int len = strlen(log+index); printf("%s", log+index); index += (len+1); } } } static void mg_update_path_extents(vec4* extents, vec2 p) { extents->x = minimum(extents->x, p.x); extents->y = minimum(extents->y, p.y); extents->z = maximum(extents->z, p.x); extents->w = maximum(extents->w, p.y); } id mg_mtl_grow_input_buffer(id device, id oldBuffer, int oldCopySize, int newSize) { @autoreleasepool { MTLResourceOptions bufferOptions = MTLResourceCPUCacheModeWriteCombined | MTLResourceStorageModeShared; id newBuffer = [device newBufferWithLength: newSize options: bufferOptions]; memcpy([newBuffer contents], [oldBuffer contents], oldCopySize); [oldBuffer release]; return(newBuffer); } } void mg_mtl_canvas_encode_element(mg_mtl_canvas_backend* backend, mg_path_elt_type kind, vec2* p) { int bufferIndex = backend->bufferIndex; int bufferCap = [backend->elementBuffer[bufferIndex] length] / sizeof(mg_mtl_path_elt); if(backend->eltCount >= bufferCap) { int newBufferCap = (int)(bufferCap * 1.5); int newBufferSize = newBufferCap * sizeof(mg_mtl_path_elt); log_info("growing element buffer to %i elements\n", newBufferCap); backend->elementBuffer[bufferIndex] = mg_mtl_grow_input_buffer(backend->surface->device, backend->elementBuffer[bufferIndex], backend->eltCount * sizeof(mg_mtl_path_elt), newBufferSize); } mg_mtl_path_elt* elements = (mg_mtl_path_elt*)[backend->elementBuffer[bufferIndex] contents]; mg_mtl_path_elt* elt = &elements[backend->eltCount]; backend->eltCount++; elt->pathIndex = backend->pathCount - backend->pathBatchStart; int count = 0; switch(kind) { case MG_PATH_LINE: backend->maxSegmentCount += 1; elt->kind = MG_MTL_LINE; count = 2; break; case MG_PATH_QUADRATIC: backend->maxSegmentCount += 3; elt->kind = MG_MTL_QUADRATIC; count = 3; break; case MG_PATH_CUBIC: backend->maxSegmentCount += 7; elt->kind = MG_MTL_CUBIC; count = 4; break; default: break; } for(int i=0; ipathUserExtents, p[i]); vec2 screenP = mg_mat2x3_mul(backend->primitive->attributes.transform, p[i]); elt->p[i] = (vector_float2){screenP.x, screenP.y}; mg_update_path_extents(&backend->pathScreenExtents, screenP); } } void mg_mtl_encode_path(mg_mtl_canvas_backend* backend, mg_primitive* primitive, float scale) { int bufferIndex = backend->bufferIndex; int bufferCap = [backend->pathBuffer[bufferIndex] length] / sizeof(mg_mtl_path); if(backend->pathCount >= bufferCap) { int newBufferCap = (int)(bufferCap * 1.5); int newBufferSize = newBufferCap * sizeof(mg_mtl_path); log_info("growing path buffer to %i elements\n", newBufferCap); backend->pathBuffer[bufferIndex] = mg_mtl_grow_input_buffer(backend->surface->device, backend->pathBuffer[bufferIndex], backend->eltCount * sizeof(mg_mtl_path), newBufferSize); } mg_mtl_path* pathBufferData = (mg_mtl_path*)[backend->pathBuffer[backend->bufferIndex] contents]; mg_mtl_path* path = &(pathBufferData[backend->pathCount]); backend->pathCount++; path->cmd = (mg_mtl_cmd)primitive->cmd; path->box = (vector_float4){backend->pathScreenExtents.x, backend->pathScreenExtents.y, backend->pathScreenExtents.z, backend->pathScreenExtents.w}; path->clip = (vector_float4){primitive->attributes.clip.x, primitive->attributes.clip.y, primitive->attributes.clip.x + primitive->attributes.clip.w, primitive->attributes.clip.y + primitive->attributes.clip.h}; path->color = (vector_float4){primitive->attributes.color.r, primitive->attributes.color.g, primitive->attributes.color.b, primitive->attributes.color.a}; mp_rect srcRegion = primitive->attributes.srcRegion; mp_rect destRegion = {backend->pathUserExtents.x, backend->pathUserExtents.y, backend->pathUserExtents.z - backend->pathUserExtents.x, backend->pathUserExtents.w - backend->pathUserExtents.y}; if(!mg_image_is_nil(primitive->attributes.image)) { vec2 texSize = mg_image_size(primitive->attributes.image); mg_mat2x3 srcRegionToImage = {1/texSize.x, 0, srcRegion.x/texSize.x, 0, 1/texSize.y, srcRegion.y/texSize.y}; mg_mat2x3 destRegionToSrcRegion = {srcRegion.w/destRegion.w, 0, 0, 0, srcRegion.h/destRegion.h, 0}; mg_mat2x3 userToDestRegion = {1, 0, -destRegion.x, 0, 1, -destRegion.y}; mg_mat2x3 screenToUser = mg_mat2x3_inv(primitive->attributes.transform); mg_mat2x3 uvTransform = srcRegionToImage; uvTransform = mg_mat2x3_mul_m(uvTransform, destRegionToSrcRegion); uvTransform = mg_mat2x3_mul_m(uvTransform, userToDestRegion); uvTransform = mg_mat2x3_mul_m(uvTransform, screenToUser); path->uvTransform = simd_matrix(simd_make_float3(uvTransform.m[0]/scale, uvTransform.m[3]/scale, 0), simd_make_float3(uvTransform.m[1]/scale, uvTransform.m[4]/scale, 0), simd_make_float3(uvTransform.m[2], uvTransform.m[5], 1)); } int nTilesX = ((path->box.z - path->box.x)*scale - 1) / MG_MTL_TILE_SIZE + 1; int nTilesY = ((path->box.w - path->box.y)*scale - 1) / MG_MTL_TILE_SIZE + 1; backend->maxTileQueueCount += (nTilesX * nTilesY); } bool mg_intersect_hull_legs(vec2 p0, vec2 p1, vec2 p2, vec2 p3, vec2* intersection) { /*NOTE: check intersection of lines (p0-p1) and (p2-p3) P = p0 + u(p1-p0) P = p2 + w(p3-p2) */ bool found = false; f32 den = (p0.x - p1.x)*(p2.y - p3.y) - (p0.y - p1.y)*(p2.x - p3.x); if(fabs(den) > 0.0001) { f32 u = ((p0.x - p2.x)*(p2.y - p3.y) - (p0.y - p2.y)*(p2.x - p3.x))/den; f32 w = ((p0.x - p2.x)*(p0.y - p1.y) - (p0.y - p2.y)*(p0.x - p1.x))/den; intersection->x = p0.x + u*(p1.x - p0.x); intersection->y = p0.y + u*(p1.y - p0.y); found = true; } return(found); } bool mg_offset_hull(int count, vec2* p, vec2* result, f32 offset) { //NOTE: we should have no more than two coincident points here. This means the leg between // those two points can't be offset, but we can set a double point at the start of first leg, // end of first leg, or we can join the first and last leg to create a missing middle one vec2 legs[3][2] = {0}; bool valid[3] = {0}; for(int i=0; i= 1e-6) { n = vec2_mul(offset/norm, n); legs[i][0] = vec2_add(p[i], n); legs[i][1] = vec2_add(p[i+1], n); valid[i] = true; } } //NOTE: now we find intersections // first point is either the start of the first or second leg if(valid[0]) { result[0] = legs[0][0]; } else { ASSERT(valid[1]); result[0] = legs[1][0]; } for(int i=1; iprimitive->attributes.width; vec2 v = {p[1].x-p[0].x, p[1].y-p[0].y}; vec2 n = {v.y, -v.x}; f32 norm = sqrt(n.x*n.x + n.y*n.y); vec2 offset = vec2_mul(0.5*width/norm, n); vec2 left[2] = {vec2_add(p[0], offset), vec2_add(p[1], offset)}; vec2 right[2] = {vec2_add(p[1], vec2_mul(-1, offset)), vec2_add(p[0], vec2_mul(-1, offset))}; vec2 joint0[2] = {vec2_add(p[0], vec2_mul(-1, offset)), vec2_add(p[0], offset)}; vec2 joint1[2] = {vec2_add(p[1], offset), vec2_add(p[1], vec2_mul(-1, offset))}; mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, right); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, left); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, joint0); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, joint1); } void mg_mtl_render_stroke_quadratic(mg_mtl_canvas_backend* backend, vec2* p) { f32 width = backend->primitive->attributes.width; f32 tolerance = minimum(backend->primitive->attributes.tolerance, 0.5 * width); //NOTE: check for degenerate line case const f32 equalEps = 1e-3; if(vec2_close(p[0], p[1], equalEps)) { mg_mtl_render_stroke_line(backend, p+1); return; } else if(vec2_close(p[1], p[2], equalEps)) { mg_mtl_render_stroke_line(backend, p); return; } vec2 leftHull[3]; vec2 rightHull[3]; if( !mg_offset_hull(3, p, leftHull, width/2) || !mg_offset_hull(3, p, rightHull, -width/2)) { //TODO split and recurse //NOTE: offsetting the hull failed, split the curve vec2 splitLeft[3]; vec2 splitRight[3]; mg_quadratic_split(p, 0.5, splitLeft, splitRight); mg_mtl_render_stroke_quadratic(backend, splitLeft); mg_mtl_render_stroke_quadratic(backend, splitRight); } else { const int CHECK_SAMPLE_COUNT = 5; f32 checkSamples[CHECK_SAMPLE_COUNT] = {1./6, 2./6, 3./6, 4./6, 5./6}; f32 d2LowBound = Square(0.5 * width - tolerance); f32 d2HighBound = Square(0.5 * width + tolerance); f32 maxOvershoot = 0; f32 maxOvershootParameter = 0; for(int i=0; i maxOvershoot) { maxOvershoot = overshoot; maxOvershootParameter = t; } } if(maxOvershoot > 0) { vec2 splitLeft[3]; vec2 splitRight[3]; mg_quadratic_split(p, maxOvershootParameter, splitLeft, splitRight); mg_mtl_render_stroke_quadratic(backend, splitLeft); mg_mtl_render_stroke_quadratic(backend, splitRight); } else { vec2 tmp = leftHull[0]; leftHull[0] = leftHull[2]; leftHull[2] = tmp; mg_mtl_canvas_encode_element(backend, MG_PATH_QUADRATIC, rightHull); mg_mtl_canvas_encode_element(backend, MG_PATH_QUADRATIC, leftHull); vec2 joint0[2] = {rightHull[2], leftHull[0]}; vec2 joint1[2] = {leftHull[2], rightHull[0]}; mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, joint0); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, joint1); } } } void mg_mtl_render_stroke_cubic(mg_mtl_canvas_backend* backend, vec2* p) { f32 width = backend->primitive->attributes.width; f32 tolerance = minimum(backend->primitive->attributes.tolerance, 0.5 * width); //NOTE: check degenerate line cases f32 equalEps = 1e-3; if( (vec2_close(p[0], p[1], equalEps) && vec2_close(p[2], p[3], equalEps)) ||(vec2_close(p[0], p[1], equalEps) && vec2_close(p[1], p[2], equalEps)) ||(vec2_close(p[1], p[2], equalEps) && vec2_close(p[2], p[3], equalEps))) { vec2 line[2] = {p[0], p[3]}; mg_mtl_render_stroke_line(backend, line); return; } else if(vec2_close(p[0], p[1], equalEps) && vec2_close(p[1], p[3], equalEps)) { vec2 line[2] = {p[0], vec2_add(vec2_mul(5./9, p[0]), vec2_mul(4./9, p[2]))}; mg_mtl_render_stroke_line(backend, line); return; } else if(vec2_close(p[0], p[2], equalEps) && vec2_close(p[2], p[3], equalEps)) { vec2 line[2] = {p[0], vec2_add(vec2_mul(5./9, p[0]), vec2_mul(4./9, p[1]))}; mg_mtl_render_stroke_line(backend, line); return; } vec2 leftHull[4]; vec2 rightHull[4]; if( !mg_offset_hull(4, p, leftHull, width/2) || !mg_offset_hull(4, p, rightHull, -width/2)) { //TODO split and recurse //NOTE: offsetting the hull failed, split the curve vec2 splitLeft[4]; vec2 splitRight[4]; mg_cubic_split(p, 0.5, splitLeft, splitRight); mg_mtl_render_stroke_cubic(backend, splitLeft); mg_mtl_render_stroke_cubic(backend, splitRight); } else { const int CHECK_SAMPLE_COUNT = 5; f32 checkSamples[CHECK_SAMPLE_COUNT] = {1./6, 2./6, 3./6, 4./6, 5./6}; f32 d2LowBound = Square(0.5 * width - tolerance); f32 d2HighBound = Square(0.5 * width + tolerance); f32 maxOvershoot = 0; f32 maxOvershootParameter = 0; for(int i=0; i maxOvershoot) { maxOvershoot = overshoot; maxOvershootParameter = t; } } if(maxOvershoot > 0) { vec2 splitLeft[4]; vec2 splitRight[4]; mg_cubic_split(p, maxOvershootParameter, splitLeft, splitRight); mg_mtl_render_stroke_cubic(backend, splitLeft); mg_mtl_render_stroke_cubic(backend, splitRight); } else { vec2 tmp = leftHull[0]; leftHull[0] = leftHull[3]; leftHull[3] = tmp; tmp = leftHull[1]; leftHull[1] = leftHull[2]; leftHull[2] = tmp; mg_mtl_canvas_encode_element(backend, MG_PATH_CUBIC, rightHull); mg_mtl_canvas_encode_element(backend, MG_PATH_CUBIC, leftHull); vec2 joint0[2] = {rightHull[3], leftHull[0]}; vec2 joint1[2] = {leftHull[3], rightHull[0]}; mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, joint0); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, joint1); } } } void mg_mtl_render_stroke_element(mg_mtl_canvas_backend* backend, mg_path_elt* element, vec2 currentPoint, vec2* startTangent, vec2* endTangent, vec2* endPoint) { vec2 controlPoints[4] = {currentPoint, element->p[0], element->p[1], element->p[2]}; int endPointIndex = 0; switch(element->type) { case MG_PATH_LINE: mg_mtl_render_stroke_line(backend, controlPoints); endPointIndex = 1; break; case MG_PATH_QUADRATIC: mg_mtl_render_stroke_quadratic(backend, controlPoints); endPointIndex = 2; break; case MG_PATH_CUBIC: mg_mtl_render_stroke_cubic(backend, controlPoints); endPointIndex = 3; break; case MG_PATH_MOVE: ASSERT(0, "should be unreachable"); break; } //NOTE: ensure tangents are properly computed even in presence of coincident points //TODO: see if we can do this in a less hacky way for(int i=1; i<4; i++) { if( controlPoints[i].x != controlPoints[0].x || controlPoints[i].y != controlPoints[0].y) { *startTangent = (vec2){.x = controlPoints[i].x - controlPoints[0].x, .y = controlPoints[i].y - controlPoints[0].y}; break; } } *endPoint = controlPoints[endPointIndex]; for(int i=endPointIndex-1; i>=0; i++) { if( controlPoints[i].x != endPoint->x || controlPoints[i].y != endPoint->y) { *endTangent = (vec2){.x = endPoint->x - controlPoints[i].x, .y = endPoint->y - controlPoints[i].y}; break; } } DEBUG_ASSERT(startTangent->x != 0 || startTangent->y != 0); } void mg_mtl_stroke_cap(mg_mtl_canvas_backend* backend, vec2 p0, vec2 direction) { mg_attributes* attributes = &backend->primitive->attributes; //NOTE(martin): compute the tangent and normal vectors (multiplied by half width) at the cap point f32 dn = sqrt(Square(direction.x) + Square(direction.y)); f32 alpha = 0.5 * attributes->width/dn; vec2 n0 = {-alpha*direction.y, alpha*direction.x}; vec2 m0 = {alpha*direction.x, alpha*direction.y}; vec2 points[] = {{p0.x + n0.x, p0.y + n0.y}, {p0.x + n0.x + m0.x, p0.y + n0.y + m0.y}, {p0.x - n0.x + m0.x, p0.y - n0.y + m0.y}, {p0.x - n0.x, p0.y - n0.y}, {p0.x + n0.x, p0.y + n0.y}}; mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+1); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+2); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+3); } void mg_mtl_stroke_joint(mg_mtl_canvas_backend* backend, vec2 p0, vec2 t0, vec2 t1) { mg_attributes* attributes = &backend->primitive->attributes; //NOTE(martin): compute the normals at the joint point f32 norm_t0 = sqrt(Square(t0.x) + Square(t0.y)); f32 norm_t1 = sqrt(Square(t1.x) + Square(t1.y)); vec2 n0 = {-t0.y, t0.x}; n0.x /= norm_t0; n0.y /= norm_t0; vec2 n1 = {-t1.y, t1.x}; n1.x /= norm_t1; n1.y /= norm_t1; //NOTE(martin): the sign of the cross product determines if the normals are facing outwards or inwards the angle. // we flip them to face outwards if needed f32 crossZ = n0.x*n1.y - n0.y*n1.x; if(crossZ > 0) { n0.x *= -1; n0.y *= -1; n1.x *= -1; n1.y *= -1; } //NOTE(martin): use the same code as hull offset to find mitter point... /*NOTE(martin): let vector u = (n0+n1) and vector v = pIntersect - p1 then v = u * (2*offset / norm(u)^2) (this can be derived from writing the pythagoras theorems in the triangles of the joint) */ f32 halfW = 0.5 * attributes->width; vec2 u = {n0.x + n1.x, n0.y + n1.y}; f32 uNormSquare = u.x*u.x + u.y*u.y; f32 alpha = attributes->width / uNormSquare; vec2 v = {u.x * alpha, u.y * alpha}; f32 excursionSquare = uNormSquare * Square(alpha - attributes->width/4); if( attributes->joint == MG_JOINT_MITER && excursionSquare <= Square(attributes->maxJointExcursion)) { //NOTE(martin): add a mitter joint vec2 points[] = {p0, {p0.x + n0.x*halfW, p0.y + n0.y*halfW}, {p0.x + v.x, p0.y + v.y}, {p0.x + n1.x*halfW, p0.y + n1.y*halfW}, p0}; mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+1); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+2); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+3); } else { //NOTE(martin): add a bevel joint vec2 points[] = {p0, {p0.x + n0.x*halfW, p0.y + n0.y*halfW}, {p0.x + n1.x*halfW, p0.y + n1.y*halfW}, p0}; mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+1); mg_mtl_canvas_encode_element(backend, MG_PATH_LINE, points+2); } } u32 mg_mtl_render_stroke_subpath(mg_mtl_canvas_backend* backend, mg_path_elt* elements, mg_path_descriptor* path, u32 startIndex, vec2 startPoint) { u32 eltCount = path->count; DEBUG_ASSERT(startIndex < eltCount); vec2 currentPoint = startPoint; vec2 endPoint = {0, 0}; vec2 previousEndTangent = {0, 0}; vec2 firstTangent = {0, 0}; vec2 startTangent = {0, 0}; vec2 endTangent = {0, 0}; //NOTE(martin): render first element and compute first tangent mg_mtl_render_stroke_element(backend, elements + startIndex, currentPoint, &startTangent, &endTangent, &endPoint); firstTangent = startTangent; previousEndTangent = endTangent; currentPoint = endPoint; //NOTE(martin): render subsequent elements along with their joints mg_attributes* attributes = &backend->primitive->attributes; u32 eltIndex = startIndex + 1; for(; eltIndexjoint != MG_JOINT_NONE) { mg_mtl_stroke_joint(backend, currentPoint, previousEndTangent, startTangent); } previousEndTangent = endTangent; currentPoint = endPoint; } u32 subPathEltCount = eltIndex - startIndex; //NOTE(martin): draw end cap / joint. We ensure there's at least two segments to draw a closing joint if( subPathEltCount > 1 && startPoint.x == endPoint.x && startPoint.y == endPoint.y) { if(attributes->joint != MG_JOINT_NONE) { //NOTE(martin): add a closing joint if the path is closed mg_mtl_stroke_joint(backend, endPoint, endTangent, firstTangent); } } else if(attributes->cap == MG_CAP_SQUARE) { //NOTE(martin): add start and end cap mg_mtl_stroke_cap(backend, startPoint, (vec2){-startTangent.x, -startTangent.y}); mg_mtl_stroke_cap(backend, endPoint, endTangent); } return(eltIndex); } void mg_mtl_render_stroke(mg_mtl_canvas_backend* backend, mg_path_elt* elements, mg_path_descriptor* path) { u32 eltCount = path->count; DEBUG_ASSERT(eltCount); vec2 startPoint = path->startPoint; u32 startIndex = 0; while(startIndex < eltCount) { //NOTE(martin): eliminate leading moves while(startIndex < eltCount && elements[startIndex].type == MG_PATH_MOVE) { startPoint = elements[startIndex].p[0]; startIndex++; } if(startIndex < eltCount) { startIndex = mg_mtl_render_stroke_subpath(backend, elements, path, startIndex, startPoint); } } } void mg_mtl_grow_buffer_if_needed(mg_mtl_canvas_backend* backend, id* buffer, u64 wantedSize) { u64 bufferSize = [(*buffer) length]; if(bufferSize < wantedSize) { int newSize = wantedSize * 1.2; @autoreleasepool { //NOTE: MTLBuffers are retained by the command buffer, so we don't risk deallocating while the buffer is in use [*buffer release]; *buffer = nil; id device = backend->surface->device; MTLResourceOptions bufferOptions = MTLResourceStorageModePrivate; *buffer = [device newBufferWithLength: newSize options: bufferOptions]; } } } void mg_mtl_render_batch(mg_mtl_canvas_backend* backend, mg_mtl_surface* surface, mg_image_data* image, int tileSize, int nTilesX, int nTilesY, vec2 viewportSize, f32 scale) { int pathBufferOffset = backend->pathBatchStart * sizeof(mg_mtl_path); int elementBufferOffset = backend->eltBatchStart * sizeof(mg_mtl_path_elt); int pathCount = backend->pathCount - backend->pathBatchStart; int eltCount = backend->eltCount - backend->eltBatchStart; //NOTE: update intermediate buffers sizes if needed mg_mtl_grow_buffer_if_needed(backend, &backend->pathQueueBuffer, pathCount * sizeof(mg_mtl_path_queue)); mg_mtl_grow_buffer_if_needed(backend, &backend->tileQueueBuffer, backend->maxTileQueueCount * sizeof(mg_mtl_tile_queue)); mg_mtl_grow_buffer_if_needed(backend, &backend->segmentBuffer, backend->maxSegmentCount * sizeof(mg_mtl_segment)); mg_mtl_grow_buffer_if_needed(backend, &backend->screenTilesBuffer, nTilesX * nTilesY * sizeof(mg_mtl_screen_tile)); mg_mtl_grow_buffer_if_needed(backend, &backend->tileOpBuffer, backend->maxSegmentCount * 30 * sizeof(mg_mtl_tile_op)); //NOTE: encode GPU commands @autoreleasepool { //NOTE: clear output texture MTLRenderPassDescriptor* clearDescriptor = [MTLRenderPassDescriptor renderPassDescriptor]; clearDescriptor.colorAttachments[0].texture = backend->outTexture; clearDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear; clearDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(0, 0, 0, 0); clearDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore; id clearEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:clearDescriptor]; clearEncoder.label = @"clear out texture pass"; [clearEncoder endEncoding]; //NOTE: clear counters id blitEncoder = [surface->commandBuffer blitCommandEncoder]; blitEncoder.label = @"clear counters"; [blitEncoder fillBuffer: backend->segmentCountBuffer range: NSMakeRange(0, sizeof(int)) value: 0]; [blitEncoder fillBuffer: backend->tileQueueCountBuffer range: NSMakeRange(0, sizeof(int)) value: 0]; [blitEncoder fillBuffer: backend->tileOpCountBuffer range: NSMakeRange(0, sizeof(int)) value: 0]; [blitEncoder fillBuffer: backend->rasterDispatchBuffer range: NSMakeRange(0, sizeof(MTLDispatchThreadgroupsIndirectArguments)) value: 0]; [blitEncoder endEncoding]; //NOTE: path setup pass id pathEncoder = [surface->commandBuffer computeCommandEncoder]; pathEncoder.label = @"path pass"; [pathEncoder setComputePipelineState: backend->pathPipeline]; int tileQueueMax = [backend->tileQueueBuffer length] / sizeof(mg_mtl_tile_queue); [pathEncoder setBytes:&pathCount length:sizeof(int) atIndex:0]; [pathEncoder setBuffer:backend->pathBuffer[backend->bufferIndex] offset:pathBufferOffset atIndex:1]; [pathEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:2]; [pathEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:3]; [pathEncoder setBuffer:backend->tileQueueCountBuffer offset:0 atIndex:4]; [pathEncoder setBytes:&tileQueueMax length:sizeof(int) atIndex:5]; [pathEncoder setBytes:&tileSize length:sizeof(int) atIndex:6]; [pathEncoder setBytes:&scale length:sizeof(int) atIndex:7]; MTLSize pathGridSize = MTLSizeMake(pathCount, 1, 1); MTLSize pathGroupSize = MTLSizeMake([backend->pathPipeline maxTotalThreadsPerThreadgroup], 1, 1); [pathEncoder dispatchThreads: pathGridSize threadsPerThreadgroup: pathGroupSize]; [pathEncoder endEncoding]; //NOTE: segment setup pass id segmentEncoder = [surface->commandBuffer computeCommandEncoder]; segmentEncoder.label = @"segment pass"; [segmentEncoder setComputePipelineState: backend->segmentPipeline]; int tileOpMax = [backend->tileOpBuffer length] / sizeof(mg_mtl_tile_op); int segmentMax = [backend->segmentBuffer length] / sizeof(mg_mtl_segment); [segmentEncoder setBytes:&eltCount length:sizeof(int) atIndex:0]; [segmentEncoder setBuffer:backend->elementBuffer[backend->bufferIndex] offset:elementBufferOffset atIndex:1]; [segmentEncoder setBuffer:backend->segmentCountBuffer offset:0 atIndex:2]; [segmentEncoder setBuffer:backend->segmentBuffer offset:0 atIndex:3]; [segmentEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:4]; [segmentEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:5]; [segmentEncoder setBuffer:backend->tileOpBuffer offset:0 atIndex:6]; [segmentEncoder setBuffer:backend->tileOpCountBuffer offset:0 atIndex:7]; [segmentEncoder setBytes:&tileOpMax length:sizeof(int) atIndex:8]; [segmentEncoder setBytes:&segmentMax length:sizeof(int) atIndex:9]; [segmentEncoder setBytes:&tileSize length:sizeof(int) atIndex:10]; [segmentEncoder setBytes:&scale length:sizeof(int) atIndex:11]; [segmentEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:12]; [segmentEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:13]; MTLSize segmentGridSize = MTLSizeMake(eltCount, 1, 1); MTLSize segmentGroupSize = MTLSizeMake([backend->segmentPipeline maxTotalThreadsPerThreadgroup], 1, 1); [segmentEncoder dispatchThreads: segmentGridSize threadsPerThreadgroup: segmentGroupSize]; [segmentEncoder endEncoding]; //NOTE: backprop pass id backpropEncoder = [surface->commandBuffer computeCommandEncoder]; backpropEncoder.label = @"backprop pass"; [backpropEncoder setComputePipelineState: backend->backpropPipeline]; [backpropEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:0]; [backpropEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:1]; [backpropEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:2]; [backpropEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:3]; MTLSize backpropGroupSize = MTLSizeMake([backend->backpropPipeline maxTotalThreadsPerThreadgroup], 1, 1); MTLSize backpropGridSize = MTLSizeMake(pathCount*backpropGroupSize.width, 1, 1); [backpropEncoder dispatchThreads: backpropGridSize threadsPerThreadgroup: backpropGroupSize]; [backpropEncoder endEncoding]; //NOTE: merge pass id mergeEncoder = [surface->commandBuffer computeCommandEncoder]; mergeEncoder.label = @"merge pass"; [mergeEncoder setComputePipelineState: backend->mergePipeline]; [mergeEncoder setBytes:&pathCount length:sizeof(int) atIndex:0]; [mergeEncoder setBuffer:backend->pathBuffer[backend->bufferIndex] offset:pathBufferOffset atIndex:1]; [mergeEncoder setBuffer:backend->pathQueueBuffer offset:0 atIndex:2]; [mergeEncoder setBuffer:backend->tileQueueBuffer offset:0 atIndex:3]; [mergeEncoder setBuffer:backend->tileOpBuffer offset:0 atIndex:4]; [mergeEncoder setBuffer:backend->tileOpCountBuffer offset:0 atIndex:5]; [mergeEncoder setBuffer:backend->rasterDispatchBuffer offset:0 atIndex:6]; [mergeEncoder setBuffer:backend->screenTilesBuffer offset:0 atIndex:7]; [mergeEncoder setBytes:&tileOpMax length:sizeof(int) atIndex:8]; [mergeEncoder setBytes:&tileSize length:sizeof(int) atIndex:9]; [mergeEncoder setBytes:&scale length:sizeof(float) atIndex:10]; [mergeEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:11]; [mergeEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:12]; MTLSize mergeGridSize = MTLSizeMake(nTilesX, nTilesY, 1); MTLSize mergeGroupSize = MTLSizeMake(MG_MTL_TILE_SIZE, MG_MTL_TILE_SIZE, 1); [mergeEncoder dispatchThreads: mergeGridSize threadsPerThreadgroup: mergeGroupSize]; [mergeEncoder endEncoding]; //NOTE: raster pass id rasterEncoder = [surface->commandBuffer computeCommandEncoder]; rasterEncoder.label = @"raster pass"; [rasterEncoder setComputePipelineState: backend->rasterPipeline]; [rasterEncoder setBuffer:backend->screenTilesBuffer offset:0 atIndex:0]; [rasterEncoder setBuffer:backend->tileOpBuffer offset:0 atIndex:1]; [rasterEncoder setBuffer:backend->pathBuffer[backend->bufferIndex] offset:pathBufferOffset atIndex:2]; [rasterEncoder setBuffer:backend->segmentBuffer offset:0 atIndex:3]; [rasterEncoder setBytes:&tileSize length:sizeof(int) atIndex:4]; [rasterEncoder setBytes:&scale length:sizeof(float) atIndex:5]; [rasterEncoder setBytes:&backend->msaaCount length:sizeof(int) atIndex:6]; [rasterEncoder setBuffer:backend->logBuffer[backend->bufferIndex] offset:0 atIndex:7]; [rasterEncoder setBuffer:backend->logOffsetBuffer[backend->bufferIndex] offset:0 atIndex:8]; [rasterEncoder setTexture:backend->outTexture atIndex:0]; int useTexture = 0; if(image) { mg_mtl_image_data* mtlImage = (mg_mtl_image_data*)image; [rasterEncoder setTexture: mtlImage->texture atIndex: 1]; useTexture = 1; } [rasterEncoder setBytes: &useTexture length:sizeof(int) atIndex: 9]; MTLSize rasterGridSize = MTLSizeMake(viewportSize.x, viewportSize.y, 1); MTLSize rasterGroupSize = MTLSizeMake(MG_MTL_TILE_SIZE, MG_MTL_TILE_SIZE, 1); [rasterEncoder dispatchThreadgroupsWithIndirectBuffer: backend->rasterDispatchBuffer indirectBufferOffset: 0 threadsPerThreadgroup: rasterGroupSize]; [rasterEncoder endEncoding]; //NOTE: blit pass MTLViewport viewport = {0, 0, viewportSize.x, viewportSize.y, 0, 1}; MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor]; renderPassDescriptor.colorAttachments[0].texture = surface->drawable.texture; renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionLoad; renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore; id renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor]; renderEncoder.label = @"blit pass"; [renderEncoder setViewport: viewport]; [renderEncoder setRenderPipelineState: backend->blitPipeline]; [renderEncoder setFragmentTexture: backend->outTexture atIndex: 0]; [renderEncoder drawPrimitives: MTLPrimitiveTypeTriangle vertexStart: 0 vertexCount: 3 ]; [renderEncoder endEncoding]; } backend->pathBatchStart = backend->pathCount; backend->eltBatchStart = backend->eltCount; backend->maxSegmentCount = 0; backend->maxTileQueueCount = 0; } void mg_mtl_canvas_resize(mg_mtl_canvas_backend* backend, vec2 size) { @autoreleasepool { if(backend->screenTilesBuffer) { [backend->screenTilesBuffer release]; backend->screenTilesBuffer = nil; } int tileSize = MG_MTL_TILE_SIZE; int nTilesX = (int)(size.x + tileSize - 1)/tileSize; int nTilesY = (int)(size.y + tileSize - 1)/tileSize; MTLResourceOptions bufferOptions = MTLResourceStorageModePrivate; backend->screenTilesBuffer = [backend->surface->device newBufferWithLength: nTilesX*nTilesY*sizeof(mg_mtl_screen_tile) options: bufferOptions]; if(backend->outTexture) { [backend->outTexture release]; backend->outTexture = nil; } MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init]; texDesc.textureType = MTLTextureType2D; texDesc.storageMode = MTLStorageModePrivate; texDesc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite | MTLTextureUsageRenderTarget; texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm; texDesc.width = size.x; texDesc.height = size.y; backend->outTexture = [backend->surface->device newTextureWithDescriptor:texDesc]; backend->frameSize = size; } } void mg_mtl_canvas_render(mg_canvas_backend* interface, mg_color clearColor, u32 primitiveCount, mg_primitive* primitives, u32 eltCount, mg_path_elt* pathElements) { mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface; //NOTE: update rolling input buffers dispatch_semaphore_wait(backend->bufferSemaphore, DISPATCH_TIME_FOREVER); backend->bufferIndex = (backend->bufferIndex + 1) % MG_MTL_INPUT_BUFFERS_COUNT; //NOTE: ensure screen tiles buffer is correct size mg_mtl_surface* surface = backend->surface; mp_rect frame = surface->interface.getFrame((mg_surface_data*)surface); f32 scale = surface->mtlLayer.contentsScale; vec2 viewportSize = {frame.w * scale, frame.h * scale}; int tileSize = MG_MTL_TILE_SIZE; int nTilesX = (int)(frame.w * scale + tileSize - 1)/tileSize; int nTilesY = (int)(frame.h * scale + tileSize - 1)/tileSize; if(viewportSize.x != backend->frameSize.x || viewportSize.y != backend->frameSize.y) { mg_mtl_canvas_resize(backend, viewportSize); } //NOTE: acquire metal resources for rendering mg_mtl_surface_acquire_command_buffer(surface); mg_mtl_surface_acquire_drawable(surface); @autoreleasepool { //NOTE: clear log counter id blitEncoder = [surface->commandBuffer blitCommandEncoder]; blitEncoder.label = @"clear log counter"; [blitEncoder fillBuffer: backend->logOffsetBuffer[backend->bufferIndex] range: NSMakeRange(0, sizeof(int)) value: 0]; [blitEncoder endEncoding]; //NOTE: clear screen MTLRenderPassDescriptor* renderPassDescriptor = [MTLRenderPassDescriptor renderPassDescriptor]; renderPassDescriptor.colorAttachments[0].texture = surface->drawable.texture; renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear; renderPassDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(clearColor.r, clearColor.g, clearColor.b, clearColor.a); renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore; id renderEncoder = [surface->commandBuffer renderCommandEncoderWithDescriptor:renderPassDescriptor]; renderEncoder.label = @"clear pass"; [renderEncoder endEncoding]; } backend->pathCount = 0; backend->pathBatchStart = 0; backend->eltCount = 0; backend->eltBatchStart = 0; backend->maxSegmentCount = 0; backend->maxTileQueueCount = 0; //NOTE: encode and render batches vec2 currentPos = {0}; mg_image currentImage = mg_image_nil(); for(int primitiveIndex = 0; primitiveIndex < primitiveCount; primitiveIndex++) { mg_primitive* primitive = &primitives[primitiveIndex]; if(primitiveIndex && (primitive->attributes.image.h != currentImage.h)) { mg_image_data* imageData = mg_image_data_from_handle(currentImage); mg_mtl_render_batch(backend, surface, imageData, tileSize, nTilesX, nTilesY, viewportSize, scale); } currentImage = primitive->attributes.image; if(primitive->path.count) { backend->primitive = primitive; backend->pathScreenExtents = (vec4){FLT_MAX, FLT_MAX, -FLT_MAX, -FLT_MAX}; backend->pathUserExtents = (vec4){FLT_MAX, FLT_MAX, -FLT_MAX, -FLT_MAX}; if(primitive->cmd == MG_CMD_STROKE) { mg_mtl_render_stroke(backend, pathElements + primitive->path.startIndex, &primitive->path); } else { for(int eltIndex = 0; (eltIndex < primitive->path.count) && (primitive->path.startIndex + eltIndex < eltCount); eltIndex++) { mg_path_elt* elt = &pathElements[primitive->path.startIndex + eltIndex]; if(elt->type != MG_PATH_MOVE) { vec2 p[4] = {currentPos, elt->p[0], elt->p[1], elt->p[2]}; mg_mtl_canvas_encode_element(backend, elt->type, p); } switch(elt->type) { case MG_PATH_MOVE: currentPos = elt->p[0]; break; case MG_PATH_LINE: currentPos = elt->p[0]; break; case MG_PATH_QUADRATIC: currentPos = elt->p[1]; break; case MG_PATH_CUBIC: currentPos = elt->p[2]; break; } } } //NOTE: encode path mg_mtl_encode_path(backend, primitive, scale); } } mg_image_data* imageData = mg_image_data_from_handle(currentImage); mg_mtl_render_batch(backend, surface, imageData, tileSize, nTilesX, nTilesY, viewportSize, scale); @autoreleasepool { //NOTE: finalize [surface->commandBuffer addCompletedHandler:^(id commandBuffer) { mg_mtl_print_log(backend->bufferIndex, backend->logBuffer[backend->bufferIndex], backend->logOffsetBuffer[backend->bufferIndex]); dispatch_semaphore_signal(backend->bufferSemaphore); }]; } } void mg_mtl_canvas_destroy(mg_canvas_backend* interface) { mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface; @autoreleasepool { [backend->pathPipeline release]; [backend->segmentPipeline release]; [backend->backpropPipeline release]; [backend->mergePipeline release]; [backend->rasterPipeline release]; [backend->blitPipeline release]; for(int i=0; ipathBuffer[i] release]; [backend->elementBuffer[i] release]; [backend->logBuffer[i] release]; [backend->logOffsetBuffer[i] release]; } [backend->segmentCountBuffer release]; [backend->segmentBuffer release]; [backend->tileQueueBuffer release]; [backend->tileQueueCountBuffer release]; [backend->tileOpBuffer release]; [backend->tileOpCountBuffer release]; [backend->screenTilesBuffer release]; } free(backend); } mg_image_data* mg_mtl_canvas_image_create(mg_canvas_backend* interface, vec2 size) { mg_mtl_image_data* image = 0; mg_mtl_canvas_backend* backend = (mg_mtl_canvas_backend*)interface; mg_mtl_surface* surface = backend->surface; @autoreleasepool { image = malloc_type(mg_mtl_image_data); if(image) { MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init]; texDesc.textureType = MTLTextureType2D; texDesc.storageMode = MTLStorageModeManaged; texDesc.usage = MTLTextureUsageShaderRead; texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm; texDesc.width = size.x; texDesc.height = size.y; image->texture = [surface->device newTextureWithDescriptor:texDesc]; if(image->texture != nil) { [image->texture retain]; image->interface.size = size; } else { free(image); image = 0; } } } return((mg_image_data*)image); } void mg_mtl_canvas_image_destroy(mg_canvas_backend* backendInterface, mg_image_data* imageInterface) { mg_mtl_image_data* image = (mg_mtl_image_data*)imageInterface; @autoreleasepool { [image->texture release]; free(image); } } void mg_mtl_canvas_image_upload_region(mg_canvas_backend* backendInterface, mg_image_data* imageInterface, mp_rect region, u8* pixels) {@autoreleasepool{ mg_mtl_image_data* image = (mg_mtl_image_data*)imageInterface; MTLRegion mtlRegion = MTLRegionMake2D(region.x, region.y, region.w, region.h); [image->texture replaceRegion:mtlRegion mipmapLevel:0 withBytes:(void*)pixels bytesPerRow: 4 * region.w]; }} const u32 MG_MTL_DEFAULT_PATH_BUFFER_LEN = (4<<10), MG_MTL_DEFAULT_ELT_BUFFER_LEN = (4<<10), MG_MTL_DEFAULT_SEGMENT_BUFFER_LEN = (4<<10), MG_MTL_DEFAULT_PATH_QUEUE_BUFFER_LEN = (4<<10), MG_MTL_DEFAULT_TILE_QUEUE_BUFFER_LEN = (4<<10), MG_MTL_DEFAULT_TILE_OP_BUFFER_LEN = (4<<20); mg_canvas_backend* mtl_canvas_backend_create(mg_mtl_surface* surface) { mg_mtl_canvas_backend* backend = 0; backend = malloc_type(mg_mtl_canvas_backend); memset(backend, 0, sizeof(mg_mtl_canvas_backend)); backend->msaaCount = MG_MTL_MSAA_COUNT; backend->surface = surface; //NOTE(martin): setup interface functions backend->interface.destroy = mg_mtl_canvas_destroy; backend->interface.render = mg_mtl_canvas_render; backend->interface.imageCreate = mg_mtl_canvas_image_create; backend->interface.imageDestroy = mg_mtl_canvas_image_destroy; backend->interface.imageUploadRegion = mg_mtl_canvas_image_upload_region; @autoreleasepool{ //NOTE: load metal library str8 shaderPath = path_executable_relative(mem_scratch(), STR8("mtl_renderer.metallib")); NSString* metalFileName = [[NSString alloc] initWithBytes: shaderPath.ptr length:shaderPath.len encoding: NSUTF8StringEncoding]; NSError* err = 0; id library = [surface->device newLibraryWithFile: metalFileName error:&err]; if(err != nil) { const char* errStr = [[err localizedDescription] UTF8String]; log_error("error : %s\n", errStr); return(0); } id pathFunction = [library newFunctionWithName:@"mtl_path_setup"]; id segmentFunction = [library newFunctionWithName:@"mtl_segment_setup"]; id backpropFunction = [library newFunctionWithName:@"mtl_backprop"]; id mergeFunction = [library newFunctionWithName:@"mtl_merge"]; id rasterFunction = [library newFunctionWithName:@"mtl_raster"]; id vertexFunction = [library newFunctionWithName:@"mtl_vertex_shader"]; id fragmentFunction = [library newFunctionWithName:@"mtl_fragment_shader"]; //NOTE: create pipelines NSError* error = NULL; backend->pathPipeline = [surface->device newComputePipelineStateWithFunction: pathFunction error:&error]; backend->segmentPipeline = [surface->device newComputePipelineStateWithFunction: segmentFunction error:&error]; backend->backpropPipeline = [surface->device newComputePipelineStateWithFunction: backpropFunction error:&error]; backend->mergePipeline = [surface->device newComputePipelineStateWithFunction: mergeFunction error:&error]; backend->rasterPipeline = [surface->device newComputePipelineStateWithFunction: rasterFunction error:&error]; MTLRenderPipelineDescriptor *pipelineStateDescriptor = [[MTLRenderPipelineDescriptor alloc] init]; pipelineStateDescriptor.label = @"blit pipeline"; pipelineStateDescriptor.vertexFunction = vertexFunction; pipelineStateDescriptor.fragmentFunction = fragmentFunction; pipelineStateDescriptor.colorAttachments[0].pixelFormat = surface->mtlLayer.pixelFormat; pipelineStateDescriptor.colorAttachments[0].blendingEnabled = YES; pipelineStateDescriptor.colorAttachments[0].rgbBlendOperation = MTLBlendOperationAdd; pipelineStateDescriptor.colorAttachments[0].sourceRGBBlendFactor = MTLBlendFactorOne; pipelineStateDescriptor.colorAttachments[0].destinationRGBBlendFactor = MTLBlendFactorOneMinusSourceAlpha; pipelineStateDescriptor.colorAttachments[0].alphaBlendOperation = MTLBlendOperationAdd; pipelineStateDescriptor.colorAttachments[0].sourceAlphaBlendFactor = MTLBlendFactorOne; pipelineStateDescriptor.colorAttachments[0].destinationAlphaBlendFactor = MTLBlendFactorOneMinusSourceAlpha; backend->blitPipeline = [surface->device newRenderPipelineStateWithDescriptor: pipelineStateDescriptor error:&err]; //NOTE: create textures mp_rect frame = surface->interface.getFrame((mg_surface_data*)surface); f32 scale = surface->mtlLayer.contentsScale; backend->frameSize = (vec2){frame.w*scale, frame.h*scale}; MTLTextureDescriptor* texDesc = [[MTLTextureDescriptor alloc] init]; texDesc.textureType = MTLTextureType2D; texDesc.storageMode = MTLStorageModePrivate; texDesc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite | MTLTextureUsageRenderTarget; texDesc.pixelFormat = MTLPixelFormatRGBA8Unorm; texDesc.width = backend->frameSize.x; texDesc.height = backend->frameSize.y; backend->outTexture = [surface->device newTextureWithDescriptor:texDesc]; //NOTE: create buffers backend->bufferSemaphore = dispatch_semaphore_create(MG_MTL_INPUT_BUFFERS_COUNT); backend->bufferIndex = 0; MTLResourceOptions bufferOptions = MTLResourceCPUCacheModeWriteCombined | MTLResourceStorageModeShared; for(int i=0; ipathBuffer[i] = [surface->device newBufferWithLength: MG_MTL_DEFAULT_PATH_BUFFER_LEN * sizeof(mg_mtl_path) options: bufferOptions]; backend->elementBuffer[i] = [surface->device newBufferWithLength: MG_MTL_DEFAULT_ELT_BUFFER_LEN * sizeof(mg_mtl_path_elt) options: bufferOptions]; } bufferOptions = MTLResourceStorageModePrivate; backend->segmentBuffer = [surface->device newBufferWithLength: MG_MTL_DEFAULT_SEGMENT_BUFFER_LEN * sizeof(mg_mtl_segment) options: bufferOptions]; backend->segmentCountBuffer = [surface->device newBufferWithLength: sizeof(int) options: bufferOptions]; backend->pathQueueBuffer = [surface->device newBufferWithLength: MG_MTL_DEFAULT_PATH_QUEUE_BUFFER_LEN * sizeof(mg_mtl_path_queue) options: bufferOptions]; backend->tileQueueBuffer = [surface->device newBufferWithLength: MG_MTL_DEFAULT_TILE_QUEUE_BUFFER_LEN * sizeof(mg_mtl_tile_queue) options: bufferOptions]; backend->tileQueueCountBuffer = [surface->device newBufferWithLength: sizeof(int) options: bufferOptions]; backend->tileOpBuffer = [surface->device newBufferWithLength: MG_MTL_DEFAULT_TILE_OP_BUFFER_LEN * sizeof(mg_mtl_tile_op) options: bufferOptions]; backend->tileOpCountBuffer = [surface->device newBufferWithLength: sizeof(int) options: bufferOptions]; backend->rasterDispatchBuffer = [surface->device newBufferWithLength: sizeof(MTLDispatchThreadgroupsIndirectArguments) options: bufferOptions]; int tileSize = MG_MTL_TILE_SIZE; int nTilesX = (int)(frame.w * scale + tileSize - 1)/tileSize; int nTilesY = (int)(frame.h * scale + tileSize - 1)/tileSize; backend->screenTilesBuffer = [surface->device newBufferWithLength: nTilesX*nTilesY*sizeof(mg_mtl_screen_tile) options: bufferOptions]; bufferOptions = MTLResourceStorageModeShared; for(int i=0; ilogBuffer[i] = [surface->device newBufferWithLength: 1<<20 options: bufferOptions]; backend->logOffsetBuffer[i] = [surface->device newBufferWithLength: sizeof(int) options: bufferOptions]; } } return((mg_canvas_backend*)backend); } mg_surface_data* mtl_canvas_surface_create_for_window(mp_window window) { mg_mtl_surface* surface = (mg_mtl_surface*)mg_mtl_surface_create_for_window(window); if(surface) { surface->interface.backend = mtl_canvas_backend_create(surface); if(surface->interface.backend) { surface->interface.api = MG_CANVAS; } else { surface->interface.destroy((mg_surface_data*)surface); surface = 0; } } return((mg_surface_data*)surface); }