orca/src/glsl_shaders/segment_setup.glsl

313 lines
6.9 KiB
GLSL

layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
precision mediump float;
layout(std430) buffer;
layout(binding = 0) restrict readonly buffer elementBufferSSBO
{
mg_gl_path_elt elements[];
} elementBuffer;
layout(binding = 1) coherent restrict buffer segmentCountBufferSSBO
{
int elements[];
} segmentCountBuffer;
layout(binding = 2) restrict buffer segmentBufferSSBO
{
mg_gl_segment elements[];
} segmentBuffer;
layout(binding = 3) coherent restrict buffer tileOpCountBufferSSBO
{
int elements[];
} tileOpCountBuffer;
layout(binding = 4) restrict buffer tileOpBufferSSBO
{
mg_gl_tile_op elements[];
} tileOpBuffer;
layout(binding = 5) coherent restrict buffer tileQueuesBufferSSBO
{
mg_gl_tile_queue elements[];
} tileQueuesBuffer;
layout(location = 0) uniform float scale;
layout(location = 1) uniform uint tileSize;
layout(location = 2) uniform ivec2 nTiles;
int push_segment(in vec2 p[4], int kind)
{
int segIndex = atomicAdd(segmentCountBuffer.elements[0], 1);
vec2 s = p[0];
vec2 c = p[0];
vec2 e = p[1];
bool goingUp = e.y >= s.y;
bool goingRight = e.x >= s.x;
vec4 box = vec4(min(s.x, e.x),
min(s.y, e.y),
max(s.x, e.x),
max(s.y, e.y));
segmentBuffer.elements[segIndex].kind = kind;
segmentBuffer.elements[segIndex].pathIndex = 0; ///
segmentBuffer.elements[segIndex].windingIncrement = goingUp ? 1 : -1;
segmentBuffer.elements[segIndex].box = box;
float dx = c.x - box.x;
float dy = c.y - box.y;
float alpha = (box.w - box.y)/(box.z - box.x);
float ofs = box.w - box.y;
if(goingUp == goingRight)
{
if(kind == MG_GL_LINE)
{
segmentBuffer.elements[segIndex].config = MG_GL_BR;
}
else if(dy > alpha*dx)
{
segmentBuffer.elements[segIndex].config = MG_GL_TL;
}
else
{
segmentBuffer.elements[segIndex].config = MG_GL_BR;
}
}
else
{
if(kind == MG_GL_LINE)
{
segmentBuffer.elements[segIndex].config = MG_GL_TR;
}
else if(dy < ofs - alpha*dx)
{
segmentBuffer.elements[segIndex].config = MG_GL_BL;
}
else
{
segmentBuffer.elements[segIndex].config = MG_GL_TR;
}
}
return(segIndex);
}
float ccw(vec2 a, vec2 b, vec2 c)
{
return((b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x));
}
int side_of_segment(vec2 p, mg_gl_segment seg)
{
int side = 0;
if(p.y > seg.box.w || p.y <= seg.box.y)
{
if(p.x > seg.box.x && p.x <= seg.box.z)
{
if(p.y > seg.box.w)
{
side = (seg.config == MG_GL_TL || seg.config == MG_GL_BR)? -1 : 1;
}
else
{
side = (seg.config == MG_GL_TL || seg.config == MG_GL_BR)? 1 : -1;
}
}
}
else if(p.x > seg.box.z)
{
side = 1;
}
else if(p.x <= seg.box.x)
{
side = -1;
}
else
{
vec2 a, b, c;
switch(seg.config)
{
case MG_GL_TL:
a = seg.box.xy;
b = seg.box.zw;
break;
case MG_GL_BR:
a = seg.box.zw;
b = seg.box.xy;
break;
case MG_GL_TR:
a = seg.box.xw;
b = seg.box.zy;
break;
case MG_GL_BL:
a = seg.box.zy;
b = seg.box.xw;
break;
}
c = seg.hullVertex;
if(ccw(a, b, p) < 0)
{
// other side of the diagonal
side = (seg.config == MG_GL_BR || seg.config == MG_GL_TR) ? -1 : 1;
}
else if(ccw(b, c, p) < 0 || ccw(c, a, p) < 0)
{
// same side of the diagonal, but outside curve hull
side = (seg.config == MG_GL_BL || seg.config == MG_GL_TL) ? -1 : 1;
}
else
{
// inside curve hull
switch(seg.kind)
{
case MG_GL_LINE:
side = 1;
break;
case MG_GL_QUADRATIC:
{
vec3 ph = {p.x, p.y, 1};
vec3 klm = seg.implicitMatrix * ph;
side = ((klm.x*klm.x - klm.y)*klm.z < 0)? -1 : 1;
} break;
case MG_GL_CUBIC:
{
vec3 ph = {p.x, p.y, 1};
vec3 klm = seg.implicitMatrix * ph;
side = (seg.sign*(klm.x*klm.x*klm.x - klm.y*klm.z) < 0)? -1 : 1;
} break;
}
}
}
return(side);
}
void bin_to_tiles(int segIndex)
{
//NOTE: add segment index to the queues of tiles it overlaps with
const mg_gl_segment seg = segmentBuffer.elements[segIndex];
ivec4 pathArea = ivec4(0, 0, nTiles.x, nTiles.y);
ivec4 coveredTiles = ivec4(seg.box)/int(tileSize);
int xMin = max(0, coveredTiles.x - pathArea.x);
int yMin = max(0, coveredTiles.y - pathArea.y);
int xMax = min(coveredTiles.z - pathArea.x, pathArea.z-1);
int yMax = min(coveredTiles.w - pathArea.y, pathArea.w-1);
for(int y = yMin; y <= yMax; y++)
{
for(int x = xMin ; x <= xMax; x++)
{
vec4 tileBox = vec4(float(x + pathArea.x),
float(y + pathArea.y),
float(x + pathArea.x + 1),
float(y + pathArea.y + 1)) * float(tileSize);
vec2 bl = {tileBox.x, tileBox.y};
vec2 br = {tileBox.z, tileBox.y};
vec2 tr = {tileBox.z, tileBox.w};
vec2 tl = {tileBox.x, tileBox.w};
int sbl = side_of_segment(bl, seg);
int sbr = side_of_segment(br, seg);
int str = side_of_segment(tr, seg);
int stl = side_of_segment(tl, seg);
bool crossL = (stl*sbl < 0);
bool crossR = (str*sbr < 0);
bool crossT = (stl*str < 0);
bool crossB = (sbl*sbr < 0);
vec2 s0, s1;
if(seg.config == MG_GL_TL||seg.config == MG_GL_BR)
{
s0 = seg.box.xy;
s1 = seg.box.zw;
}
else
{
s0 = seg.box.xw;
s1 = seg.box.zy;
}
bool s0Inside = s0.x >= tileBox.x
&& s0.x < tileBox.z
&& s0.y >= tileBox.y
&& s0.y < tileBox.w;
bool s1Inside = s1.x >= tileBox.x
&& s1.x < tileBox.z
&& s1.y >= tileBox.y
&& s1.y < tileBox.w;
if(crossL || crossR || crossT || crossB || s0Inside || s1Inside)
{
int tileOpIndex = atomicAdd(tileOpCountBuffer.elements[0], 1);
tileOpBuffer.elements[tileOpIndex].kind = MG_GL_OP_SEGMENT;
tileOpBuffer.elements[tileOpIndex].index = segIndex;
tileOpBuffer.elements[tileOpIndex].crossRight = false;
tileOpBuffer.elements[tileOpIndex].next = -1;
int tileIndex = y*pathArea.z + x;
tileOpBuffer.elements[tileOpIndex].next = atomicExchange(tileQueuesBuffer.elements[tileIndex].first, tileOpIndex);
if(tileOpBuffer.elements[tileOpIndex].next == -1)
{
tileQueuesBuffer.elements[tileIndex].last = tileOpIndex;
}
//NOTE: if the segment crosses the tile's bottom boundary, update the tile's winding offset
if(crossB)
{
atomicAdd(tileQueuesBuffer.elements[tileIndex].windingOffset, seg.windingIncrement);
}
//NOTE: if the segment crosses the right boundary, mark it.
if(crossR)
{
tileOpBuffer.elements[tileOpIndex].crossRight = true;
}
}
}
}
}
void line_setup(vec2 p[4])
{
int segIndex = push_segment(p, MG_GL_LINE);
segmentBuffer.elements[segIndex].hullVertex = p[0];
bin_to_tiles(segIndex);
}
void main()
{
int eltIndex = int(gl_WorkGroupID.x);
mg_gl_path_elt elt = elementBuffer.elements[eltIndex];
switch(elt.kind)
{
case MG_GL_LINE:
{
vec2 p[4] = {elt.p[0]*scale, elt.p[1]*scale, vec2(0), vec2(0)};
line_setup(p);
} break;
default:
break;
}
}