orca/src/graphics/mtl_renderer.metal

1717 lines
55 KiB
Metal

/*************************************************************************
*
* Orca
* Copyright 2023 Martin Fouilleul and the Orca project contributors
* See LICENSE.txt for licensing information
*
**************************************************************************/
#include <metal_simdgroup>
#include <metal_stdlib>
#include <simd/simd.h>
#include "mtl_renderer.h"
using namespace metal;
typedef struct mtl_log_context
{
device char* buffer;
device volatile atomic_int* offset;
bool enabled;
} mtl_log_context;
int strlen(const constant char* msg)
{
int count = 0;
while(msg[count] != '\0')
{
count++;
}
return (count);
}
int strlen(const thread char* msg)
{
int count = 0;
while(msg[count] != '\0')
{
count++;
}
return (count);
}
void mtl_log(mtl_log_context context, const constant char* msg)
{
if(context.enabled)
{
int len = strlen(msg);
int offset = atomic_fetch_add_explicit(context.offset, len + 1, memory_order_relaxed);
for(int i = 0; i < len; i++)
{
context.buffer[offset + i] = msg[i];
}
context.buffer[offset + len] = '\0';
}
}
void mtl_log(mtl_log_context context, const thread char* msg)
{
if(context.enabled)
{
int len = strlen(msg);
int offset = atomic_fetch_add_explicit(context.offset, len + 1, memory_order_relaxed);
for(int i = 0; i < len; i++)
{
context.buffer[offset + i] = msg[i];
}
context.buffer[offset + len] = '\0';
}
}
int mtl_itoa_right_aligned(int bufSize, thread char* buffer, int64_t value, bool zeroPad)
{
// convert value to a null-terminated string at end of buffer and returns the size
// (excluding the final null).
bool minus = false;
if(value < 0)
{
minus = true;
value *= -1;
}
buffer[bufSize - 1] = '\0';
int index = bufSize - 2;
int stop = minus ? 1 : 0;
do
{
buffer[index] = '0' + (value % 10);
index--;
value /= 10;
}
while(value != 0 && index >= stop);
if(zeroPad)
{
while(index >= stop)
{
buffer[index] = '0';
index--;
}
}
if(minus)
{
buffer[index] = '-';
index--;
}
int count = bufSize - (index + 1);
return (count - 1);
}
int mtl_itoa(int bufSize, thread char* buffer, int64_t value)
{
int count = mtl_itoa_right_aligned(bufSize, buffer, value, false);
int start = bufSize - (count + 1);
for(int i = 0; i < count + 1; i++)
{
buffer[i] = buffer[start + i];
}
return (count);
}
void mtl_log_i32(mtl_log_context context, int value)
{
char buffer[12];
mtl_itoa(12, buffer, value);
mtl_log(context, buffer);
}
void mtl_log_f32(mtl_log_context context, float value)
{
bool minus = false;
if(value < 0)
{
minus = true;
value *= -1;
}
int64_t integral = (int64_t)value;
int64_t decimal = (int64_t)((value - (float)integral) * 1e6);
const int bufSize = 64;
char buffer[bufSize];
int index = 0;
if(minus)
{
buffer[index] = '-';
index++;
}
index += mtl_itoa(bufSize - index, buffer + index, integral);
if(index < bufSize && decimal)
{
buffer[index] = '.';
index++;
int width = 6;
while(decimal % 10 == 0 && width > 0)
{
decimal /= 10;
width--;
}
int decSize = min(bufSize - index, width + 1);
mtl_itoa_right_aligned(decSize, buffer + index, decimal, true);
}
buffer[bufSize - 1] = '\0';
mtl_log(context, buffer);
}
void mtl_log_point(mtl_log_context context, float2 p)
{
mtl_log(context, "(");
mtl_log_f32(context, p.x);
mtl_log(context, ", ");
mtl_log_f32(context, p.y);
mtl_log(context, ")");
}
void log_line(thread float2* p, mtl_log_context logCtx)
{
mtl_log(logCtx, "(");
mtl_log_f32(logCtx, p[0].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[0].y);
mtl_log(logCtx, ") (");
mtl_log_f32(logCtx, p[1].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[1].y);
mtl_log(logCtx, ")\n");
}
void log_quadratic_bezier(thread float2* p, mtl_log_context logCtx)
{
mtl_log(logCtx, "(");
mtl_log_f32(logCtx, p[0].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[0].y);
mtl_log(logCtx, ") (");
mtl_log_f32(logCtx, p[1].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[1].y);
mtl_log(logCtx, ") (");
mtl_log_f32(logCtx, p[2].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[2].y);
mtl_log(logCtx, ")\n");
}
void log_cubic_bezier(thread float2* p, mtl_log_context logCtx)
{
mtl_log(logCtx, "(");
mtl_log_f32(logCtx, p[0].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[0].y);
mtl_log(logCtx, ") (");
mtl_log_f32(logCtx, p[1].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[1].y);
mtl_log(logCtx, ") (");
mtl_log_f32(logCtx, p[2].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[2].y);
mtl_log(logCtx, ") (");
mtl_log_f32(logCtx, p[3].x);
mtl_log(logCtx, ", ");
mtl_log_f32(logCtx, p[3].y);
mtl_log(logCtx, ")\n");
}
kernel void mtl_path_setup(constant int* pathCount [[buffer(0)]],
const device oc_mtl_path* pathBuffer [[buffer(1)]],
device oc_mtl_path_queue* pathQueueBuffer [[buffer(2)]],
device oc_mtl_tile_queue* tileQueueBuffer [[buffer(3)]],
device atomic_int* tileQueueCount [[buffer(4)]],
constant int* tileQueueMax [[buffer(5)]],
constant int* tileSize [[buffer(6)]],
constant float* scale [[buffer(7)]],
uint pathIndex [[thread_position_in_grid]])
{
const device oc_mtl_path* path = &pathBuffer[pathIndex];
//NOTE: we don't clip on the right, since we need those tiles to accurately compute
// the prefix sum of winding increments in the backprop pass.
float4 clippedBox = { max(path->box.x, path->clip.x),
max(path->box.y, path->clip.y),
path->box.z,
min(path->box.w, path->clip.w) };
int2 firstTile = int2(clippedBox.xy * scale[0]) / tileSize[0];
int2 lastTile = int2(clippedBox.zw * scale[0]) / tileSize[0];
int nTilesX = max(0, lastTile.x - firstTile.x + 1);
int nTilesY = max(0, lastTile.y - firstTile.y + 1);
int tileCount = nTilesX * nTilesY;
int tileQueuesIndex = atomic_fetch_add_explicit(tileQueueCount, tileCount, memory_order_relaxed);
if(tileQueuesIndex + tileCount >= tileQueueMax[0])
{
pathQueueBuffer[pathIndex].area = int4(0);
pathQueueBuffer[pathIndex].tileQueues = 0;
}
else
{
pathQueueBuffer[pathIndex].area = int4(firstTile.x, firstTile.y, nTilesX, nTilesY);
pathQueueBuffer[pathIndex].tileQueues = tileQueuesIndex;
device oc_mtl_tile_queue* tileQueues = &tileQueueBuffer[tileQueuesIndex];
for(int i = 0; i < tileCount; i++)
{
atomic_store_explicit(&tileQueues[i].first, -1, memory_order_relaxed);
tileQueues[i].last = -1;
atomic_store_explicit(&tileQueues[i].windingOffset, 0, memory_order_relaxed);
}
}
}
float ccw(float2 a, float2 b, float2 c)
{
return ((b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x));
}
int mtl_side_of_segment(float2 p, const device oc_mtl_segment* seg, mtl_log_context log = { .enabled = false })
{
int side = 0;
if(p.y > seg->box.w || p.y <= seg->box.y)
{
if(p.x > seg->box.x && p.x <= seg->box.z)
{
if(p.y > seg->box.w)
{
side = (seg->config == OC_MTL_TL || seg->config == OC_MTL_BR) ? -1 : 1;
}
else
{
side = (seg->config == OC_MTL_TL || seg->config == OC_MTL_BR) ? 1 : -1;
}
}
}
else if(p.x > seg->box.z)
{
side = 1;
}
else if(p.x <= seg->box.x)
{
side = -1;
}
else
{
float2 a, b, c;
switch(seg->config)
{
case OC_MTL_TL:
a = seg->box.xy;
b = seg->box.zw;
break;
case OC_MTL_BR:
a = seg->box.zw;
b = seg->box.xy;
break;
case OC_MTL_TR:
a = seg->box.xw;
b = seg->box.zy;
break;
case OC_MTL_BL:
a = seg->box.zy;
b = seg->box.xw;
break;
}
c = seg->hullVertex;
if(ccw(a, b, p) < 0)
{
// other side of the diagonal
side = (seg->config == OC_MTL_BR || seg->config == OC_MTL_TR) ? -1 : 1;
}
else if(ccw(b, c, p) < 0 || ccw(c, a, p) < 0)
{
// same side of the diagonal, but outside curve hull
side = (seg->config == OC_MTL_BL || seg->config == OC_MTL_TL) ? -1 : 1;
}
else
{
// inside curve hull
switch(seg->kind)
{
case OC_MTL_LINE:
side = 1;
break;
case OC_MTL_QUADRATIC:
{
float3 ph = { p.x, p.y, 1 };
float3 klm = seg->implicitMatrix * ph;
side = ((klm.x * klm.x - klm.y) * klm.z < 0) ? -1 : 1;
}
break;
case OC_MTL_CUBIC:
{
float3 ph = { p.x, p.y, 1 };
float3 klm = seg->implicitMatrix * ph;
side = (seg->sign * (klm.x * klm.x * klm.x - klm.y * klm.z) < 0) ? -1 : 1;
}
break;
}
}
}
return (side);
}
typedef struct mtl_segment_setup_context
{
device atomic_int* segmentCount;
device oc_mtl_segment* segmentBuffer;
const device oc_mtl_path_queue* pathQueue;
device oc_mtl_tile_queue* tileQueues;
device oc_mtl_tile_op* tileOpBuffer;
device atomic_int* tileOpCount;
int tileSize;
mtl_log_context log;
int pathIndex;
int tileOpMax;
int segmentMax;
} mtl_segment_setup_context;
void mtl_segment_bin_to_tiles(thread mtl_segment_setup_context* context, device oc_mtl_segment* seg)
{
//NOTE: add segment index to the queues of tiles it overlaps with
int segIndex = seg - context->segmentBuffer;
int tileSize = context->tileSize;
int4 pathArea = context->pathQueue->area;
int4 coveredTiles = int4(seg->box) / tileSize;
int xMin = max(0, coveredTiles.x - pathArea.x);
int yMin = max(0, coveredTiles.y - pathArea.y);
int xMax = min(coveredTiles.z - pathArea.x, pathArea.z - 1);
int yMax = min(coveredTiles.w - pathArea.y, pathArea.w - 1);
for(int y = yMin; y <= yMax; y++)
{
for(int x = xMin; x <= xMax; x++)
{
float4 tileBox = (float4){ float(x + pathArea.x),
float(y + pathArea.y),
float(x + pathArea.x + 1),
float(y + pathArea.y + 1) }
* float(tileSize);
float2 bl = { tileBox.x, tileBox.y };
float2 br = { tileBox.z, tileBox.y };
float2 tr = { tileBox.z, tileBox.w };
float2 tl = { tileBox.x, tileBox.w };
int sbl = mtl_side_of_segment(bl, seg, context->log);
int sbr = mtl_side_of_segment(br, seg, context->log);
int str = mtl_side_of_segment(tr, seg, context->log);
int stl = mtl_side_of_segment(tl, seg, context->log);
bool crossL = (stl * sbl < 0);
bool crossR = (str * sbr < 0);
bool crossT = (stl * str < 0);
bool crossB = (sbl * sbr < 0);
float2 s0, s1;
if(seg->config == OC_MTL_TL || seg->config == OC_MTL_BR)
{
s0 = seg->box.xy;
s1 = seg->box.zw;
}
else
{
s0 = seg->box.xw;
s1 = seg->box.zy;
}
bool s0Inside = s0.x >= tileBox.x
&& s0.x < tileBox.z
&& s0.y >= tileBox.y
&& s0.y < tileBox.w;
bool s1Inside = s1.x >= tileBox.x
&& s1.x < tileBox.z
&& s1.y >= tileBox.y
&& s1.y < tileBox.w;
if(crossL || crossR || crossT || crossB || s0Inside || s1Inside)
{
int tileOpIndex = atomic_fetch_add_explicit(context->tileOpCount, 1, memory_order_relaxed);
if(tileOpIndex < context->tileOpMax)
{
device oc_mtl_tile_op* op = &context->tileOpBuffer[tileOpIndex];
op->kind = OC_MTL_OP_SEGMENT;
op->index = segIndex;
op->crossRight = false;
op->next = -1;
int tileIndex = y * pathArea.z + x;
device oc_mtl_tile_queue* tile = &context->tileQueues[tileIndex];
op->next = atomic_exchange_explicit(&tile->first, tileOpIndex, memory_order_relaxed);
if(op->next == -1)
{
tile->last = tileOpIndex;
}
//NOTE: if the segment crosses the tile's bottom boundary, update the tile's winding offset
if(crossB)
{
mtl_log(context->log, "cross bottom boundary, increment ");
mtl_log_f32(context->log, seg->windingIncrement);
mtl_log(context->log, "\n");
atomic_fetch_add_explicit(&tile->windingOffset, seg->windingIncrement, memory_order_relaxed);
}
//NOTE: if the segment crosses the right boundary, mark it. We reuse one of the previous tests
if(crossR)
{
op->crossRight = true;
}
}
}
}
}
}
device oc_mtl_segment* mtl_segment_push(thread mtl_segment_setup_context* context, float2 p[4], oc_mtl_seg_kind kind)
{
float2 s, e, c;
switch(kind)
{
case OC_MTL_LINE:
s = p[0];
c = p[0];
e = p[1];
break;
case OC_MTL_QUADRATIC:
s = p[0];
c = p[1];
e = p[2];
break;
case OC_MTL_CUBIC:
{
s = p[0];
float sqrNorm0 = length_squared(p[1] - p[0]);
float sqrNorm1 = length_squared(p[3] - p[2]);
if(sqrNorm0 < sqrNorm1)
{
c = p[2];
}
else
{
c = p[1];
}
e = p[3];
}
break;
}
device oc_mtl_segment* seg = 0;
int segIndex = atomic_fetch_add_explicit(context->segmentCount, 1, memory_order_relaxed);
if(segIndex < context->segmentMax)
{
seg = &context->segmentBuffer[segIndex];
bool goingUp = e.y >= s.y;
bool goingRight = e.x >= s.x;
seg->kind = kind;
seg->pathIndex = context->pathIndex;
seg->windingIncrement = goingUp ? 1 : -1;
seg->box = (vector_float4){ min(s.x, e.x),
min(s.y, e.y),
max(s.x, e.x),
max(s.y, e.y) };
float dx = c.x - seg->box.x;
float dy = c.y - seg->box.y;
float alpha = (seg->box.w - seg->box.y) / (seg->box.z - seg->box.x);
float ofs = seg->box.w - seg->box.y;
if(goingUp == goingRight)
{
if(seg->kind == OC_MTL_LINE)
{
seg->config = OC_MTL_BR;
}
else if(dy > alpha * dx)
{
seg->config = OC_MTL_TL;
}
else
{
seg->config = OC_MTL_BR;
}
}
else
{
if(seg->kind == OC_MTL_LINE)
{
seg->config = OC_MTL_TR;
}
else if(dy < ofs - alpha * dx)
{
seg->config = OC_MTL_BL;
}
else
{
seg->config = OC_MTL_TR;
}
}
}
return (seg);
}
#define square(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
void mtl_line_setup(thread mtl_segment_setup_context* context, float2 p[2])
{
device oc_mtl_segment* seg = mtl_segment_push(context, p, OC_MTL_LINE);
if(seg)
{
seg->hullVertex = p[0];
mtl_segment_bin_to_tiles(context, seg);
}
}
float2 mtl_quadratic_blossom(float2 p[3], float u, float v)
{
float2 b10 = u * p[1] + (1 - u) * p[0];
float2 b11 = u * p[2] + (1 - u) * p[1];
float2 b20 = v * b11 + (1 - v) * b10;
return (b20);
}
void mtl_quadratic_slice(float2 p[3], float s0, float s1, float2 sp[3])
{
/*NOTE: using blossoms to compute sub-curve control points ensure that the fourth point
of sub-curve (s0, s1) and the first point of sub-curve (s1, s3) match.
However, due to numerical errors, the evaluation of B(s=0) might not be equal to
p[0] (and likewise, B(s=1) might not equal p[3]).
We handle that case explicitly to ensure that we don't create gaps in the paths.
*/
sp[0] = (s0 == 0) ? p[0] : mtl_quadratic_blossom(p, s0, s0);
sp[1] = mtl_quadratic_blossom(p, s0, s1);
sp[2] = (s1 == 1) ? p[2] : mtl_quadratic_blossom(p, s1, s1);
}
int mtl_quadratic_monotonize(float2 p[3], float splits[4])
{
//NOTE: compute split points
int count = 0;
splits[0] = 0;
count++;
float2 r = (p[0] - p[1]) / (p[2] - 2 * p[1] + p[0]);
if(r.x > r.y)
{
float tmp = r.x;
r.x = r.y;
r.y = tmp;
}
if(r.x > 0 && r.x < 1)
{
splits[count] = r.x;
count++;
}
if(r.y > 0 && r.y < 1)
{
splits[count] = r.y;
count++;
}
splits[count] = 1;
count++;
return (count);
}
matrix_float3x3 mtl_barycentric_matrix(float2 v0, float2 v1, float2 v2)
{
float det = v0.x * (v1.y - v2.y) + v1.x * (v2.y - v0.y) + v2.x * (v0.y - v1.y);
matrix_float3x3 B = { { v1.y - v2.y, v2.y - v0.y, v0.y - v1.y },
{ v2.x - v1.x, v0.x - v2.x, v1.x - v0.x },
{ v1.x * v2.y - v2.x * v1.y, v2.x * v0.y - v0.x * v2.y, v0.x * v1.y - v1.x * v0.y } };
B *= (1 / det);
return (B);
}
void mtl_quadratic_emit(thread mtl_segment_setup_context* context,
thread float2* p)
{
device oc_mtl_segment* seg = mtl_segment_push(context, p, OC_MTL_QUADRATIC);
if(seg)
{
//NOTE: compute implicit equation matrix
float det = p[0].x * (p[1].y - p[2].y) + p[1].x * (p[2].y - p[0].y) + p[2].x * (p[0].y - p[1].y);
float a = p[0].y - p[1].y + 0.5 * (p[2].y - p[0].y);
float b = p[1].x - p[0].x + 0.5 * (p[0].x - p[2].x);
float c = p[0].x * p[1].y - p[1].x * p[0].y + 0.5 * (p[2].x * p[0].y - p[0].x * p[2].y);
float d = p[0].y - p[1].y;
float e = p[1].x - p[0].x;
float f = p[0].x * p[1].y - p[1].x * p[0].y;
float flip = (seg->config == OC_MTL_TL || seg->config == OC_MTL_BL) ? -1 : 1;
float g = flip * (p[2].x * (p[0].y - p[1].y) + p[0].x * (p[1].y - p[2].y) + p[1].x * (p[2].y - p[0].y));
seg->implicitMatrix = (1 / det) * matrix_float3x3({ a, d, 0. }, { b, e, 0. }, { c, f, g });
seg->hullVertex = p[1];
mtl_segment_bin_to_tiles(context, seg);
}
}
void mtl_quadratic_setup(thread mtl_segment_setup_context* context, thread float2* p)
{
float splits[4];
int splitCount = mtl_quadratic_monotonize(p, splits);
//NOTE: produce bézier curve for each consecutive pair of roots
for(int sliceIndex = 0; sliceIndex < splitCount - 1; sliceIndex++)
{
float2 sp[3];
mtl_quadratic_slice(p, splits[sliceIndex], splits[sliceIndex + 1], sp);
mtl_quadratic_emit(context, sp);
}
}
/*
diff_of_products() computes a*b-c*d with a maximum error <= 1.5 ulp
Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller,
"Further Analysis of Kahan's Algorithm for the Accurate Computation
of 2x2 Determinants". Mathematics of Computation, Vol. 82, No. 284,
Oct. 2013, pp. 2245-2264
*/
float diff_of_products(float a, float b, float c, float d)
{
float w = d * c;
float e = fma(-d, c, w);
float f = fma(a, b, -w);
return (f + e);
}
int mtl_quadratic_roots_with_det(float a, float b, float c, float det, thread float* r, mtl_log_context log = { .enabled = false })
{
int count = 0;
if(a == 0)
{
if(b)
{
count = 1;
r[0] = -c / b;
}
}
else
{
b /= 2.0;
if(det >= 0)
{
count = (det == 0) ? 1 : 2;
if(b > 0)
{
float q = b + sqrt(det);
r[0] = -c / q;
r[1] = -q / a;
}
else if(b < 0)
{
float q = -b + sqrt(det);
r[0] = q / a;
r[1] = c / q;
}
else
{
float q = sqrt(-a * c);
if(fabs(a) >= fabs(c))
{
r[0] = q / a;
r[1] = -q / a;
}
else
{
r[0] = -c / q;
r[1] = c / q;
}
}
}
}
if(count > 1 && r[0] > r[1])
{
float tmp = r[0];
r[0] = r[1];
r[1] = tmp;
}
return (count);
}
int mtl_quadratic_roots(float a, float b, float c, thread float* r, mtl_log_context log = { .enabled = false })
{
//float det = diff_of_products(b, b, a, c);
float det = square(b) / 4. - a * c;
return (mtl_quadratic_roots_with_det(a, b, c, det, r, log));
}
float2 mtl_cubic_blossom(float2 p[4], float u, float v, float w)
{
float2 b10 = u * p[1] + (1 - u) * p[0];
float2 b11 = u * p[2] + (1 - u) * p[1];
float2 b12 = u * p[3] + (1 - u) * p[2];
float2 b20 = v * b11 + (1 - v) * b10;
float2 b21 = v * b12 + (1 - v) * b11;
float2 b30 = w * b21 + (1 - w) * b20;
return (b30);
}
void mtl_cubic_slice(float2 p[4], float s0, float s1, float2 sp[4])
{
/*NOTE: using blossoms to compute sub-curve control points ensure that the fourth point
of sub-curve (s0, s1) and the first point of sub-curve (s1, s3) match.
However, due to numerical errors, the evaluation of B(s=0) might not be equal to
p[0] (and likewise, B(s=1) might not equal p[3]).
We handle that case explicitly to ensure that we don't create gaps in the paths.
*/
sp[0] = (s0 == 0) ? p[0] : mtl_cubic_blossom(p, s0, s0, s0);
sp[1] = mtl_cubic_blossom(p, s0, s0, s1);
sp[2] = mtl_cubic_blossom(p, s0, s1, s1);
sp[3] = (s1 == 1) ? p[3] : mtl_cubic_blossom(p, s1, s1, s1);
}
typedef enum
{
MTL_CUBIC_ERROR,
MTL_CUBIC_SERPENTINE,
MTL_CUBIC_CUSP,
MTL_CUBIC_CUSP_INFINITY,
MTL_CUBIC_LOOP,
MTL_CUBIC_DEGENERATE_QUADRATIC,
MTL_CUBIC_DEGENERATE_LINE,
} mtl_cubic_kind;
typedef struct mtl_cubic_info
{
mtl_cubic_kind kind;
matrix_float4x4 K;
float2 ts[2];
float d1;
float d2;
float d3;
} mtl_cubic_info;
mtl_cubic_info mtl_cubic_classify(thread float2* c, mtl_log_context log = { .enabled = false })
{
mtl_cubic_info result = { MTL_CUBIC_ERROR };
matrix_float4x4 F;
/*NOTE(martin):
now, compute determinants d0, d1, d2, d3, which gives the coefficients of the
inflection points polynomial:
I(t, s) = d0*t^3 - 3*d1*t^2*s + 3*d2*t*s^2 - d3*s^3
The roots of this polynomial are the inflection points of the parametric curve, in homogeneous
coordinates (ie we can have an inflection point at inifinity with s=0).
|x3 y3 w3| |x3 y3 w3| |x3 y3 w3| |x2 y2 w2|
d0 = det |x2 y2 w2| d1 = -det |x2 y2 w2| d2 = det |x1 y1 w1| d3 = -det |x1 y1 w1|
|x1 y1 w1| |x0 y0 w0| |x0 y0 w0| |x0 y0 w0|
In our case, the pi.w equal 1 (no point at infinity), so _in_the_power_basis_, w1 = w2 = w3 = 0 and w0 = 1
(which also means d0 = 0)
//WARN: there seems to be a mismatch between the signs of the d_i and the orientation test in the Loop-Blinn paper?
// flipping the sign of the d_i doesn't change the roots (and the implicit matrix), but it does change the orientation.
// Keeping the signs of the paper puts the interior on the left of parametric travel, unlike what's stated in the paper.
// this may very well be an error on my part that's cancelled by flipping the signs of the d_i though!
*/
float d1 = -(c[3].y * c[2].x - c[3].x * c[2].y);
float d2 = -(c[3].x * c[1].y - c[3].y * c[1].x);
float d3 = -(c[2].y * c[1].x - c[2].x * c[1].y);
result.d1 = d1;
result.d2 = d2;
result.d3 = d3;
// mtl_log(log, "d1 = ");
/* mtl_log_f32(log, d1);
mtl_log(log, ", d2 = ");
mtl_log_f32(log, d2);
mtl_log(log, ", d3 = ");
mtl_log_f32(log, d3);
mtl_log(log, "\n");
*/
//NOTE(martin): compute the second factor of the discriminant discr(I) = d1^2*(3*d2^2 - 4*d3*d1)
float discrFactor2 = 3.0 * square(d2) - 4.0 * d3 * d1;
//NOTE(martin): each following case gives the number of roots, hence the category of the parametric curve
if(fabs(d1) <= 1e-6 && fabs(d2) <= 1e-6 && fabs(d3) > 1e-6)
{
//NOTE(martin): quadratic degenerate case
//NOTE(martin): compute quadratic curve control point, which is at p0 + 1.5*(p1-p0) = 1.5*p1 - 0.5*p0
result.kind = MTL_CUBIC_DEGENERATE_QUADRATIC;
}
else if((discrFactor2 > 0 && fabs(d1) > 1e-6)
|| (discrFactor2 == 0 && fabs(d1) > 1e-6))
{
//mtl_log(log, "cusp or serpentine\n");
//NOTE(martin): serpentine curve or cusp with inflection at infinity
// (these two cases are handled the same way).
//NOTE(martin): compute the solutions (tl, sl), (tm, sm), and (tn, sn) of the inflection point equation
float tmtl[2];
mtl_quadratic_roots_with_det(1, -2 * d2, (4. / 3. * d1 * d3), (1. / 3.) * discrFactor2, tmtl);
float tm = tmtl[0];
float sm = 2 * d1;
float tl = tmtl[1];
float sl = 2 * d1;
float invNorm = 1 / sqrt(square(tm) + square(sm));
tm *= invNorm;
sm *= invNorm;
invNorm = 1 / sqrt(square(tl) + square(sl));
tl *= invNorm;
sl *= invNorm;
/*NOTE(martin):
the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F:
| tl*tm tl^3 tm^3 1 |
| -sm*tl - sl*tm -3sl*tl^2 -3*sm*tm^2 0 |
| sl*sm 3*sl^2*tl 3*sm^2*tm 0 |
| 0 -sl^3 -sm^3 0 |
*/
result.kind = (discrFactor2 > 0 && d1 != 0) ? MTL_CUBIC_SERPENTINE : MTL_CUBIC_CUSP;
F = (matrix_float4x4){ { tl * tm, -sm * tl - sl * tm, sl * sm, 0 },
{ cube(tl), -3 * sl * square(tl), 3 * square(sl) * tl, -cube(sl) },
{ cube(tm), -3 * sm * square(tm), 3 * square(sm) * tm, -cube(sm) },
{ 1, 0, 0, 0 } };
result.ts[0] = (float2){ tm, sm };
result.ts[1] = (float2){ tl, sl };
}
else if(discrFactor2 < 0 && fabs(d1) > 1e-6)
{
// mtl_log(log, "loop\n");
//NOTE(martin): loop curve
result.kind = MTL_CUBIC_LOOP;
float tetd[2];
mtl_quadratic_roots_with_det(1, -2 * d2, 4 * (square(d2) - d1 * d3), -discrFactor2, tetd, log);
float td = tetd[1];
float sd = 2 * d1;
float te = tetd[0];
float se = 2 * d1;
float invNorm = 1 / sqrt(square(td) + square(sd));
td *= invNorm;
sd *= invNorm;
invNorm = 1 / sqrt(square(te) + square(se));
te *= invNorm;
se *= invNorm;
//NOTE(martin): if one of the parameters (td/sd) or (te/se) is in the interval [0,1], the double point
// is inside the control points convex hull and would cause a shading anomaly. If this is
// the case, subdivide the curve at that point
/*
mtl_log(log, "td = ");
mtl_log_f32(log, td);
mtl_log(log, ", sd = ");
mtl_log_f32(log, sd);
mtl_log(log, ", te = ");
mtl_log_f32(log, te);
mtl_log(log, ", se = ");
mtl_log_f32(log, td);
mtl_log(log, ", td/sd = ");
mtl_log_f32(log, td/sd);
mtl_log(log, ", te/se = ");
mtl_log_f32(log, te/se);
mtl_log(log, "\n");
//*/
/*NOTE(martin):
the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F:
| td*te td^2*te td*te^2 1 |
| -se*td - sd*te -se*td^2 - 2sd*te*td -sd*te^2 - 2*se*td*te 0 |
| sd*se te*sd^2 + 2*se*td*sd td*se^2 + 2*sd*te*se 0 |
| 0 -sd^2*se -sd*se^2 0 |
*/
F = (matrix_float4x4){ { td * te, -se * td - sd * te, sd * se, 0 },
{ square(td) * te, -se * square(td) - 2 * sd * te * td, te * square(sd) + 2 * se * td * sd, -square(sd) * se },
{ td * square(te), -sd * square(te) - 2 * se * td * te, td * square(se) + 2 * sd * te * se, -sd * square(se) },
{ 1, 0, 0, 0 } };
result.ts[0] = (float2){ td, sd };
result.ts[1] = (float2){ te, se };
}
else if(d2 != 0)
{
//NOTE(martin): cusp with cusp at infinity
// mtl_log(log, "cusp at infinity\n");
float tl = d3;
float sl = 3 * d2;
float invNorm = 1 / sqrt(square(tl) + square(sl));
tl *= invNorm;
sl *= invNorm;
/*NOTE(martin):
the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F:
| tl tl^3 1 1 |
| -sl -3sl*tl^2 0 0 |
| 0 3*sl^2*tl 0 0 |
| 0 -sl^3 0 0 |
*/
result.kind = MTL_CUBIC_CUSP_INFINITY;
F = (matrix_float4x4){ { tl, -sl, 0, 0 },
{ cube(tl), -3 * sl * square(tl), 3 * square(sl) * tl, -cube(sl) },
{ 1, 0, 0, 0 },
{ 1, 0, 0, 0 } };
result.ts[0] = (float2){ tl, sl };
result.ts[1] = (float2){ 0, 0 };
}
else
{
//NOTE(martin): line or point degenerate case
result.kind = MTL_CUBIC_DEGENERATE_LINE;
}
/*
F is then multiplied by M3^(-1) on the left which yelds the bezier coefficients k, l, m, n
at the control points.
| 1 0 0 0 |
M3^(-1) = | 1 1/3 0 0 |
| 1 2/3 1/3 0 |
| 1 1 1 1 |
*/
matrix_float4x4 invM3 = { { 1, 1, 1, 1 },
{ 0, 1. / 3., 2. / 3., 1 },
{ 0, 0, 1. / 3., 1 },
{ 0, 0, 0, 1 } };
result.K = transpose(invM3 * F);
return (result);
}
float2 mtl_select_hull_vertex(float2 p0, float2 p1, float2 p2, float2 p3, mtl_log_context log)
{
/*NOTE: check intersection of lines (p1-p0) and (p3-p2)
P = p0 + u(p1-p0)
P = p2 + w(p3-p2)
control points are inside a right triangle so we should always find an intersection
*/
float2 pm;
float det = (p1.x - p0.x) * (p3.y - p2.y) - (p1.y - p0.y) * (p3.x - p2.x);
float sqrNorm0 = length_squared(p1 - p0);
float sqrNorm1 = length_squared(p2 - p3);
if(fabs(det) < 1e-3 || sqrNorm0 < 0.1 || sqrNorm1 < 0.1)
{
if(sqrNorm0 < sqrNorm1)
{
pm = p2;
}
else
{
pm = p1;
}
}
else
{
float u = ((p0.x - p2.x) * (p2.y - p3.y) - (p0.y - p2.y) * (p2.x - p3.x)) / det;
pm = p0 + u * (p1 - p0);
}
return (pm);
}
void mtl_cubic_emit(thread mtl_segment_setup_context* context, mtl_cubic_info curve, float2 p[4], float s0, float s1, float2 sp[4])
{
device oc_mtl_segment* seg = mtl_segment_push(context, sp, OC_MTL_CUBIC);
if(seg)
{
float2 v0 = p[0];
float2 v1 = p[3];
float2 v2;
matrix_float3x3 K;
float sqrNorm0 = length_squared(p[1] - p[0]);
float sqrNorm1 = length_squared(p[2] - p[3]);
//TODO: should not be the local sub-curve, but the global curve!!!
if(length_squared(p[0] - p[3]) > 1e-5)
{
if(sqrNorm0 >= sqrNorm1)
{
v2 = p[1];
K = { curve.K[0].xyz, curve.K[3].xyz, curve.K[1].xyz };
}
else
{
v2 = p[2];
K = { curve.K[0].xyz, curve.K[3].xyz, curve.K[2].xyz };
}
}
else
{
v1 = p[1];
v2 = p[2];
K = { curve.K[0].xyz, curve.K[1].xyz, curve.K[2].xyz };
}
//NOTE: set matrices
//TODO: should we compute matrix relative to a base point to avoid loss of precision
// when computing barycentric matrix?
matrix_float3x3 B = mtl_barycentric_matrix(v0, v1, v2);
seg->implicitMatrix = K * B;
seg->hullVertex = mtl_select_hull_vertex(sp[0], sp[1], sp[2], sp[3], context->log);
//NOTE: compute sign flip
seg->sign = 1;
if(curve.kind == MTL_CUBIC_SERPENTINE
|| curve.kind == MTL_CUBIC_CUSP)
{
seg->sign = (curve.d1 < 0) ? -1 : 1;
}
else if(curve.kind == MTL_CUBIC_LOOP)
{
float d1 = curve.d1;
float d2 = curve.d2;
float d3 = curve.d3;
float H0 = d3 * d1 - square(d2) + d1 * d2 * s0 - square(d1) * square(s0);
float H1 = d3 * d1 - square(d2) + d1 * d2 * s1 - square(d1) * square(s1);
float H = (abs(H0) > abs(H1)) ? H0 : H1;
seg->sign = (H * d1 > 0) ? -1 : 1;
}
if(sp[3].y > sp[0].y)
{
seg->sign *= -1;
}
//NOTE: bin to tiles
mtl_segment_bin_to_tiles(context, seg);
}
}
void mtl_cubic_setup(thread mtl_segment_setup_context* context, float2 p[4])
{
/*NOTE(martin): first convert the control points to power basis, multiplying by M3
| 1 0 0 0| |p0| |c0|
M3 = |-3 3 0 0|, B = |p1|, C = |c1| = M3*B
| 3 -6 3 0| |p2| |c2|
|-1 3 -3 1| |p3| |c3|
*/
float2 c[4] = {
p[0],
3.0 * (p[1] - p[0]),
3.0 * (p[0] + p[2] - 2 * p[1]),
3.0 * (p[1] - p[2]) + p[3] - p[0]
};
/*
mtl_log(context->log, "bezier basis: ");
log_cubic_bezier(p, context->log);
mtl_log(context->log, "power basis: ");
log_cubic_bezier(c, context->log);
*/
//NOTE: get classification, implicit matrix, double points and inflection points
mtl_cubic_info curve = mtl_cubic_classify(c, context->log);
if(curve.kind == MTL_CUBIC_DEGENERATE_LINE)
{
float2 l[2] = { p[0], p[3] };
mtl_line_setup(context, l);
return;
}
else if(curve.kind == MTL_CUBIC_DEGENERATE_QUADRATIC)
{
float2 quadPoint = float2(1.5 * p[1].x - 0.5 * p[0].x, 1.5 * p[1].y - 0.5 * p[0].y);
float2 q[3] = { p[0], quadPoint, p[3] };
mtl_quadratic_setup(context, q);
return;
}
//NOTE: get the roots of B'(s) = 3.c3.s^2 + 2.c2.s + c1
float roots[6];
int rootCount = mtl_quadratic_roots(3 * c[3].x, 2 * c[2].x, c[1].x, roots);
rootCount += mtl_quadratic_roots(3 * c[3].y, 2 * c[2].y, c[1].y, roots + rootCount);
//NOTE: add double points and inflection points to roots if finite
for(int i = 0; i < 2; i++)
{
if(curve.ts[i].y)
{
roots[rootCount] = curve.ts[i].x / curve.ts[i].y;
rootCount++;
}
}
//NOTE: sort roots
for(int i = 1; i < rootCount; i++)
{
float tmp = roots[i];
int j = i - 1;
while(j >= 0 && roots[j] > tmp)
{
roots[j + 1] = roots[j];
j--;
}
roots[j + 1] = tmp;
}
//NOTE: compute split points
float splits[8];
int splitCount = 0;
splits[0] = 0;
splitCount++;
for(int i = 0; i < rootCount; i++)
{
if(roots[i] > 0 && roots[i] < 1)
{
splits[splitCount] = roots[i];
splitCount++;
}
}
splits[splitCount] = 1;
splitCount++;
mtl_log(context->log, "monotonic segment count = ");
mtl_log_i32(context->log, splitCount - 1);
mtl_log(context->log, "\n");
//NOTE: for each monotonic segment, compute hull matrix and sign, and emit segment
for(int sliceIndex = 0; sliceIndex < splitCount - 1; sliceIndex++)
{
float s0 = splits[sliceIndex];
float s1 = splits[sliceIndex + 1];
float2 sp[4];
mtl_cubic_slice(p, s0, s1, sp);
/////////////////////// we should ensure that these have the same endpoints as the original curve and all endpoints are joining
mtl_log(context->log, "monotonic slice ");
mtl_log_i32(context->log, sliceIndex);
mtl_log(context->log, " ( ");
mtl_log_f32(context->log, s0);
mtl_log(context->log, " <= s <= ");
mtl_log_f32(context->log, s1);
mtl_log(context->log, " ): ");
log_cubic_bezier(sp, context->log);
mtl_cubic_emit(context, curve, p, s0, s1, sp);
}
}
kernel void mtl_segment_setup(constant int* elementCount [[buffer(0)]],
const device oc_mtl_path_elt* elementBuffer [[buffer(1)]],
device atomic_int* segmentCount [[buffer(2)]],
device oc_mtl_segment* segmentBuffer [[buffer(3)]],
const device oc_mtl_path_queue* pathQueueBuffer [[buffer(4)]],
device oc_mtl_tile_queue* tileQueueBuffer [[buffer(5)]],
device oc_mtl_tile_op* tileOpBuffer [[buffer(6)]],
device atomic_int* tileOpCount [[buffer(7)]],
constant int* tileOpMax [[buffer(8)]],
constant int* segmentMax [[buffer(9)]],
constant int* tileSize [[buffer(10)]],
constant float* scale [[buffer(11)]],
device char* logBuffer [[buffer(12)]],
device atomic_int* logOffsetBuffer [[buffer(13)]],
uint eltIndex [[thread_position_in_grid]])
{
const device oc_mtl_path_elt* elt = &elementBuffer[eltIndex];
const device oc_mtl_path_queue* pathQueue = &pathQueueBuffer[elt->pathIndex];
device oc_mtl_tile_queue* tileQueues = &tileQueueBuffer[pathQueue->tileQueues];
mtl_segment_setup_context setupCtx = {
.pathIndex = elt->pathIndex,
.segmentCount = segmentCount,
.segmentBuffer = segmentBuffer,
.pathQueue = pathQueue,
.tileQueues = tileQueues,
.tileOpBuffer = tileOpBuffer,
.tileOpCount = tileOpCount,
.tileOpMax = tileOpMax[0],
.segmentMax = segmentMax[0],
.tileSize = tileSize[0],
.log.buffer = logBuffer,
.log.offset = logOffsetBuffer,
.log.enabled = false,
};
switch(elt->kind)
{
case OC_MTL_LINE:
{
float2 p[2] = { elt->p[0] * scale[0], elt->p[1] * scale[0] };
mtl_log(setupCtx.log, "line: ");
log_line(p, setupCtx.log);
mtl_line_setup(&setupCtx, p);
}
break;
case OC_MTL_QUADRATIC:
{
float2 p[3] = { elt->p[0] * scale[0], elt->p[1] * scale[0], elt->p[2] * scale[0] };
mtl_log(setupCtx.log, "quadratic: ");
log_quadratic_bezier(p, setupCtx.log);
mtl_quadratic_setup(&setupCtx, p);
}
break;
case OC_MTL_CUBIC:
{
float2 p[4] = { elt->p[0] * scale[0], elt->p[1] * scale[0], elt->p[2] * scale[0], elt->p[3] * scale[0] };
mtl_log(setupCtx.log, "cubic: ");
log_cubic_bezier(p, setupCtx.log);
mtl_cubic_setup(&setupCtx, p);
}
break;
}
}
kernel void mtl_backprop(const device oc_mtl_path_queue* pathQueueBuffer [[buffer(0)]],
device oc_mtl_tile_queue* tileQueueBuffer [[buffer(1)]],
device char* logBuffer [[buffer(2)]],
device atomic_int* logOffsetBuffer [[buffer(3)]],
device int* segmentCount [[buffer(4)]],
uint pathIndex [[threadgroup_position_in_grid]],
uint localID [[thread_position_in_threadgroup]],
uint uid [[thread_position_in_grid]])
{
mtl_log_context log = { .buffer = logBuffer, .offset = logOffsetBuffer, .enabled = false };
if(uid == 0)
{
mtl_log(log, "segmentCount = ");
mtl_log_i32(log, segmentCount[0]);
mtl_log(log, "\n");
}
threadgroup atomic_int nextRowIndex;
if(localID == 0)
{
atomic_store_explicit(&nextRowIndex, 0, memory_order_relaxed);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
int rowIndex = 0;
const device oc_mtl_path_queue* pathQueue = &pathQueueBuffer[pathIndex];
device oc_mtl_tile_queue* tiles = &tileQueueBuffer[pathQueue->tileQueues];
int rowSize = pathQueue->area.z;
int rowCount = pathQueue->area.w;
rowIndex = atomic_fetch_add_explicit(&nextRowIndex, 1, memory_order_relaxed);
while(rowIndex < rowCount)
{
device oc_mtl_tile_queue* row = &tiles[rowIndex * rowSize];
int sum = 0;
for(int x = rowSize - 1; x >= 0; x--)
{
device oc_mtl_tile_queue* tile = &row[x];
int offset = *(device int*)&tile->windingOffset;
*(device int*)(&tile->windingOffset) = sum;
sum += offset;
}
rowIndex = atomic_fetch_add_explicit(&nextRowIndex, 1, memory_order_relaxed);
}
}
kernel void mtl_merge(constant int* pathCount [[buffer(0)]],
const device oc_mtl_path* pathBuffer [[buffer(1)]],
const device oc_mtl_path_queue* pathQueueBuffer [[buffer(2)]],
const device oc_mtl_tile_queue* tileQueueBuffer [[buffer(3)]],
device oc_mtl_tile_op* tileOpBuffer [[buffer(4)]],
device atomic_int* tileOpCount [[buffer(5)]],
device MTLDispatchThreadgroupsIndirectArguments* dispatchBuffer [[buffer(6)]],
device oc_mtl_screen_tile* screenTilesBuffer [[buffer(7)]],
constant int* tileOpMax [[buffer(8)]],
constant int* tileSize [[buffer(9)]],
constant float* scale [[buffer(10)]],
device char* logBuffer [[buffer(11)]],
device atomic_int* logOffsetBuffer [[buffer(12)]],
uint2 threadCoord [[thread_position_in_grid]],
uint2 gridSize [[threads_per_grid]])
{
int2 tileCoord = int2(threadCoord);
int tileIndex = -1;
device int* nextLink = 0;
/*
mtl_log_context log = {.buffer = logBuffer,
.offset = logOffsetBuffer,
.enabled = true};
*/
dispatchBuffer[0].threadgroupsPerGrid[1] = 1;
dispatchBuffer[0].threadgroupsPerGrid[2] = 1;
for(int pathIndex = 0; pathIndex < pathCount[0]; pathIndex++)
{
const device oc_mtl_path_queue* pathQueue = &pathQueueBuffer[pathIndex];
int2 pathTileCoord = tileCoord - pathQueue->area.xy;
const device oc_mtl_path* path = &pathBuffer[pathIndex];
float xMax = min(path->box.z, path->clip.z);
int tileMaxX = xMax * scale[0] / tileSize[0];
int pathTileMaxX = tileMaxX - pathQueue->area.x;
if(pathTileCoord.x >= 0
&& pathTileCoord.x <= pathTileMaxX
&& pathTileCoord.y >= 0
&& pathTileCoord.y < pathQueue->area.w)
{
if(tileIndex < 0)
{
tileIndex = atomic_fetch_add_explicit((device atomic_uint*)&dispatchBuffer[0].threadgroupsPerGrid[0], 1, memory_order_relaxed);
screenTilesBuffer[tileIndex].tileCoord = uint2(tileCoord);
nextLink = &screenTilesBuffer[tileIndex].first;
*nextLink = -1;
}
int pathTileIndex = pathTileCoord.y * pathQueue->area.z + pathTileCoord.x;
const device oc_mtl_tile_queue* tileQueue = &tileQueueBuffer[pathQueue->tileQueues + pathTileIndex];
int windingOffset = atomic_load_explicit(&tileQueue->windingOffset, memory_order_relaxed);
int firstOpIndex = atomic_load_explicit(&tileQueue->first, memory_order_relaxed);
float4 tileBox = float4(tileCoord.x, tileCoord.y, tileCoord.x + 1, tileCoord.y + 1);
tileBox *= tileSize[0];
float4 clip = pathBuffer[pathIndex].clip * scale[0];
if(tileBox.x >= clip.z
|| tileBox.z < clip.x
|| tileBox.y >= clip.w
|| tileBox.w < clip.y)
{
//NOTE: tile is fully outside clip, cull it
}
else if(firstOpIndex == -1)
{
if(windingOffset & 1)
{
//NOTE: tile is full covered. Add path start op (with winding offset).
// Additionally if color is opaque and tile is fully inside clip, trim tile list.
int pathOpIndex = atomic_fetch_add_explicit(tileOpCount, 1, memory_order_relaxed);
if(pathOpIndex >= tileOpMax[0])
{
return;
}
device oc_mtl_tile_op* pathOp = &tileOpBuffer[pathOpIndex];
pathOp->kind = OC_MTL_OP_CLIP_FILL;
pathOp->next = -1;
pathOp->index = pathIndex;
pathOp->windingOffset = windingOffset;
*nextLink = pathOpIndex;
if(tileBox.x >= clip.x
&& tileBox.z < clip.z
&& tileBox.y >= clip.y
&& tileBox.w < clip.w)
{
pathOp->kind = OC_MTL_OP_FILL;
if(pathBuffer[pathIndex].color.a == 1 && pathBuffer[pathIndex].texture < 0)
{
screenTilesBuffer[tileIndex].first = pathOpIndex;
}
}
nextLink = &pathOp->next;
}
// else, tile is fully uncovered, skip path
}
else
{
//NOTE: add path start op (with winding offset)
int startOpIndex = atomic_fetch_add_explicit(tileOpCount, 1, memory_order_relaxed);
if(startOpIndex >= tileOpMax[0])
{
return;
}
device oc_mtl_tile_op* startOp = &tileOpBuffer[startOpIndex];
startOp->kind = OC_MTL_OP_START;
startOp->next = -1;
startOp->index = pathIndex;
startOp->windingOffset = windingOffset;
*nextLink = startOpIndex;
nextLink = &startOp->next;
//NOTE: chain remaining path ops to end of tile list
int lastOpIndex = tileQueue->last;
device oc_mtl_tile_op* lastOp = &tileOpBuffer[lastOpIndex];
*nextLink = firstOpIndex;
nextLink = &lastOp->next;
//NOTE: add path end op
int endOpIndex = atomic_fetch_add_explicit(tileOpCount, 1, memory_order_relaxed);
if(endOpIndex >= tileOpMax[0])
{
return;
}
device oc_mtl_tile_op* endOp = &tileOpBuffer[endOpIndex];
endOp->kind = OC_MTL_OP_END;
endOp->next = -1;
endOp->index = pathIndex;
*nextLink = endOpIndex;
nextLink = &endOp->next;
}
}
}
}
kernel void mtl_raster(const device oc_mtl_screen_tile* screenTilesBuffer [[buffer(0)]],
const device oc_mtl_tile_op* tileOpBuffer [[buffer(1)]],
const device oc_mtl_path* pathBuffer [[buffer(2)]],
const device oc_mtl_segment* segmentBuffer [[buffer(3)]],
constant int* tileSize [[buffer(4)]],
constant float* scale [[buffer(5)]],
constant int* sampleCountBuffer [[buffer(6)]],
device char* logBuffer [[buffer(7)]],
device atomic_int* logOffsetBuffer [[buffer(8)]],
texture2d<float, access::write> outTexture [[texture(0)]],
array<texture2d<float>, OC_MTL_MAX_IMAGES_PER_BATCH> srcTextures [[texture(1)]],
uint2 threadGroupCoord [[threadgroup_position_in_grid]],
uint2 localCoord [[thread_position_in_threadgroup]])
{
/*
mtl_log_context log = {.buffer = logBuffer,
.offset = logOffsetBuffer,
.enabled = true};
*/
int tileIndex = int(threadGroupCoord.x);
uint2 tileCoord = screenTilesBuffer[tileIndex].tileCoord;
uint2 pixelCoord = tileCoord * tileSize[0] + localCoord.xy;
int opIndex = screenTilesBuffer[tileIndex].first;
const int OC_MTL_MAX_SAMPLE_COUNT = 8;
float2 sampleCoords[OC_MTL_MAX_SAMPLE_COUNT];
int sampleCount = sampleCountBuffer[0];
float2 centerCoord = float2(pixelCoord) + float2(0.5, 0.5);
if(sampleCount == 8)
{
sampleCount = 8;
sampleCoords[0] = centerCoord + float2(1, 3) / 16;
sampleCoords[1] = centerCoord + float2(-1, -3) / 16;
sampleCoords[2] = centerCoord + float2(5, -1) / 16;
sampleCoords[3] = centerCoord + float2(-3, 5) / 16;
sampleCoords[4] = centerCoord + float2(-5, -5) / 16;
sampleCoords[5] = centerCoord + float2(-7, 1) / 16;
sampleCoords[6] = centerCoord + float2(3, -7) / 16;
sampleCoords[7] = centerCoord + float2(7, 7) / 16;
}
else
{
sampleCount = 1;
sampleCoords[0] = centerCoord;
}
const int OC_MTL_MAX_SRC_SAMPLE_COUNT = 4;
const int srcSampleCount = 2;
const float2 imgSampleCoords[OC_MTL_MAX_SRC_SAMPLE_COUNT] = {
centerCoord + float2(-0.25, 0.25),
centerCoord + float2(+0.25, +0.25),
centerCoord + float2(+0.25, -0.25),
centerCoord + float2(-0.25, +0.25)
};
float4 color = { 0 };
int winding[OC_MTL_MAX_SAMPLE_COUNT] = { 0 };
while(opIndex != -1)
{
const device oc_mtl_tile_op* op = &tileOpBuffer[opIndex];
int pathIndex = op->index;
if(op->kind == OC_MTL_OP_START)
{
for(int sampleIndex = 0; sampleIndex < sampleCount; sampleIndex++)
{
winding[sampleIndex] = op->windingOffset;
}
}
else if(op->kind == OC_MTL_OP_SEGMENT)
{
const device oc_mtl_segment* seg = &segmentBuffer[op->index];
for(int sampleIndex = 0; sampleIndex < sampleCount; sampleIndex++)
{
float2 sampleCoord = sampleCoords[sampleIndex];
if((sampleCoord.y > seg->box.y)
&& (sampleCoord.y <= seg->box.w)
&& (mtl_side_of_segment(sampleCoord, seg) < 0))
{
winding[sampleIndex] += seg->windingIncrement;
}
if(op->crossRight)
{
if((seg->config == OC_MTL_BR || seg->config == OC_MTL_TL)
&& (sampleCoord.y > seg->box.w))
{
winding[sampleIndex] += seg->windingIncrement;
}
else if((seg->config == OC_MTL_BL || seg->config == OC_MTL_TR)
&& (sampleCoord.y > seg->box.y))
{
winding[sampleIndex] -= seg->windingIncrement;
}
}
}
}
else
{
float4 nextColor = pathBuffer[pathIndex].color;
nextColor.rgb *= nextColor.a;
int textureIndex = pathBuffer[pathIndex].texture;
if(textureIndex >= 0 && textureIndex < OC_MTL_MAX_IMAGES_PER_BATCH)
{
constexpr sampler smp(mip_filter::nearest, mag_filter::linear, min_filter::linear);
float4 texColor = { 0 };
for(int sampleIndex = 0; sampleIndex < srcSampleCount; sampleIndex++)
{
float2 sampleCoord = imgSampleCoords[sampleIndex];
float3 ph = float3(sampleCoord.xy, 1);
float2 uv = (pathBuffer[pathIndex].uvTransform * ph).xy;
texColor += srcTextures[textureIndex].sample(smp, uv);
}
texColor /= srcSampleCount;
texColor.rgb *= texColor.a;
nextColor *= texColor;
}
if(op->kind == OC_MTL_OP_FILL)
{
color = color * (1 - nextColor.a) + nextColor;
}
else
{
float4 clip = pathBuffer[pathIndex].clip * scale[0];
float coverage = 0;
for(int sampleIndex = 0; sampleIndex < sampleCount; sampleIndex++)
{
float2 sampleCoord = sampleCoords[sampleIndex];
if(sampleCoord.x >= clip.x
&& sampleCoord.x < clip.z
&& sampleCoord.y >= clip.y
&& sampleCoord.y < clip.w)
{
bool filled = op->kind == OC_MTL_OP_CLIP_FILL
|| (pathBuffer[pathIndex].cmd == OC_MTL_FILL && (winding[sampleIndex] & 1))
|| (pathBuffer[pathIndex].cmd == OC_MTL_STROKE && (winding[sampleIndex] != 0));
if(filled)
{
coverage++;
}
}
}
coverage /= sampleCount;
color = coverage * (color * (1 - nextColor.a) + nextColor) + (1 - coverage) * color;
}
}
opIndex = op->next;
}
/*
if((pixelCoord.x % tileSize[0] == 0) || (pixelCoord.y % tileSize[0] == 0))
{
color = float4(0, 0, 0, 1);
}
//*/
outTexture.write(color, pixelCoord);
}
//------------------------------------------------------------------------------------
// Blit shader
//------------------------------------------------------------------------------------
struct vs_out
{
float4 pos [[position]];
float2 uv;
};
vertex vs_out mtl_vertex_shader(ushort vid [[vertex_id]])
{
vs_out out;
out.uv = float2((vid << 1) & 2, vid & 2);
out.pos = float4(out.uv * float2(2, -2) + float2(-1, 1), 0, 1);
return (out);
}
fragment float4 mtl_fragment_shader(vs_out i [[stage_in]], texture2d<float, access::sample> tex [[texture(0)]])
{
constexpr sampler smp(mip_filter::nearest, mag_filter::linear, min_filter::linear);
return (tex.sample(smp, i.uv));
}