orca/src/graphics/glsl_shaders/segment_setup.glsl

868 lines
22 KiB
GLSL

layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
precision mediump float;
layout(std430) buffer;
layout(binding = 0) restrict readonly buffer elementBufferSSBO
{
oc_gl_path_elt elements[];
} elementBuffer;
layout(binding = 1) coherent restrict buffer segmentCountBufferSSBO
{
int elements[];
} segmentCountBuffer;
layout(binding = 2) restrict buffer segmentBufferSSBO
{
oc_gl_segment elements[];
} segmentBuffer;
layout(binding = 3) restrict buffer pathQueueBufferSSBO
{
oc_gl_path_queue elements[];
} pathQueueBuffer;
layout(binding = 4) coherent restrict buffer tileQueueBufferSSBO
{
oc_gl_tile_queue elements[];
} tileQueueBuffer;
layout(binding = 5) coherent restrict buffer tileOpCountBufferSSBO
{
int elements[];
} tileOpCountBuffer;
layout(binding = 6) restrict buffer tileOpBufferSSBO
{
oc_gl_tile_op elements[];
} tileOpBuffer;
layout(location = 0) uniform float scale;
layout(location = 1) uniform uint tileSize;
layout(location = 2) uniform int elementBufferStart;
void bin_to_tiles(int segIndex)
{
//NOTE: add segment index to the queues of tiles it overlaps with
const oc_gl_segment seg = segmentBuffer.elements[segIndex];
const oc_gl_path_queue pathQueue = pathQueueBuffer.elements[seg.pathIndex];
ivec4 pathArea = pathQueue.area;
ivec4 coveredTiles = ivec4(seg.box)/int(tileSize);
int xMin = max(0, coveredTiles.x - pathArea.x);
int yMin = max(0, coveredTiles.y - pathArea.y);
int xMax = min(coveredTiles.z - pathArea.x, pathArea.z-1);
int yMax = min(coveredTiles.w - pathArea.y, pathArea.w-1);
for(int y = yMin; y <= yMax; y++)
{
for(int x = xMin ; x <= xMax; x++)
{
vec4 tileBox = vec4(float(x + pathArea.x),
float(y + pathArea.y),
float(x + pathArea.x + 1),
float(y + pathArea.y + 1)) * float(tileSize);
vec2 bl = {tileBox.x, tileBox.y};
vec2 br = {tileBox.z, tileBox.y};
vec2 tr = {tileBox.z, tileBox.w};
vec2 tl = {tileBox.x, tileBox.w};
int sbl = side_of_segment(bl, seg);
int sbr = side_of_segment(br, seg);
int str = side_of_segment(tr, seg);
int stl = side_of_segment(tl, seg);
bool crossL = (stl*sbl < 0);
bool crossR = (str*sbr < 0);
bool crossT = (stl*str < 0);
bool crossB = (sbl*sbr < 0);
vec2 s0, s1;
if(seg.config == OC_GL_TL||seg.config == OC_GL_BR)
{
s0 = seg.box.xy;
s1 = seg.box.zw;
}
else
{
s0 = seg.box.xw;
s1 = seg.box.zy;
}
bool s0Inside = s0.x >= tileBox.x
&& s0.x < tileBox.z
&& s0.y >= tileBox.y
&& s0.y < tileBox.w;
bool s1Inside = s1.x >= tileBox.x
&& s1.x < tileBox.z
&& s1.y >= tileBox.y
&& s1.y < tileBox.w;
if(crossL || crossR || crossT || crossB || s0Inside || s1Inside)
{
int tileOpIndex = atomicAdd(tileOpCountBuffer.elements[0], 1);
if(tileOpIndex < tileOpBuffer.elements.length())
{
tileOpBuffer.elements[tileOpIndex].kind = OC_GL_OP_SEGMENT;
tileOpBuffer.elements[tileOpIndex].index = segIndex;
tileOpBuffer.elements[tileOpIndex].windingOffsetOrCrossRight = 0;
tileOpBuffer.elements[tileOpIndex].next = -1;
int tileQueueIndex = pathQueue.tileQueues + y*pathArea.z + x;
tileOpBuffer.elements[tileOpIndex].next = atomicExchange(tileQueueBuffer.elements[tileQueueIndex].first,
tileOpIndex);
if(tileOpBuffer.elements[tileOpIndex].next == -1)
{
tileQueueBuffer.elements[tileQueueIndex].last = tileOpIndex;
}
//NOTE: if the segment crosses the tile's bottom boundary, update the tile's winding offset
if(crossB)
{
atomicAdd(tileQueueBuffer.elements[tileQueueIndex].windingOffset, seg.windingIncrement);
}
//NOTE: if the segment crosses the right boundary, mark it.
if(crossR)
{
tileOpBuffer.elements[tileOpIndex].windingOffsetOrCrossRight = 1;
}
}
}
}
}
}
int push_segment(in vec2 p[4], int kind, int pathIndex)
{
int segIndex = atomicAdd(segmentCountBuffer.elements[0], 1);
if(segIndex < segmentBuffer.elements.length())
{
vec2 s, c, e;
switch(kind)
{
case OC_GL_LINE:
s = p[0];
c = p[0];
e = p[1];
break;
case OC_GL_QUADRATIC:
s = p[0];
c = p[1];
e = p[2];
break;
case OC_GL_CUBIC:
{
s = p[0];
float sqrNorm0 = dot(p[1]-p[0], p[1]-p[0]);
float sqrNorm1 = dot(p[3]-p[2], p[3]-p[2]);
if(sqrNorm0 < sqrNorm1)
{
c = p[2];
}
else
{
c = p[1];
}
e = p[3];
} break;
}
bool goingUp = e.y >= s.y;
bool goingRight = e.x >= s.x;
vec4 box = vec4(min(s.x, e.x),
min(s.y, e.y),
max(s.x, e.x),
max(s.y, e.y));
segmentBuffer.elements[segIndex].kind = kind;
segmentBuffer.elements[segIndex].pathIndex = pathIndex;
segmentBuffer.elements[segIndex].windingIncrement = goingUp ? 1 : -1;
segmentBuffer.elements[segIndex].box = box;
float dx = c.x - box.x;
float dy = c.y - box.y;
float alpha = (box.w - box.y)/(box.z - box.x);
float ofs = box.w - box.y;
if(goingUp == goingRight)
{
if(kind == OC_GL_LINE)
{
segmentBuffer.elements[segIndex].config = OC_GL_BR;
}
else if(dy > alpha*dx)
{
segmentBuffer.elements[segIndex].config = OC_GL_TL;
}
else
{
segmentBuffer.elements[segIndex].config = OC_GL_BR;
}
}
else
{
if(kind == OC_GL_LINE)
{
segmentBuffer.elements[segIndex].config = OC_GL_TR;
}
else if(dy < ofs - alpha*dx)
{
segmentBuffer.elements[segIndex].config = OC_GL_BL;
}
else
{
segmentBuffer.elements[segIndex].config = OC_GL_TR;
}
}
}
return(segIndex);
}
#define square(x) ((x)*(x))
#define cube(x) ((x)*(x)*(x))
void line_setup(vec2 p[4], int pathIndex)
{
int segIndex = push_segment(p, OC_GL_LINE, pathIndex);
if(segIndex < segmentBuffer.elements.length())
{
segmentBuffer.elements[segIndex].hullVertex = p[0];
bin_to_tiles(segIndex);
}
}
vec2 quadratic_blossom(vec2 p[4], float u, float v)
{
vec2 b10 = u*p[1] + (1-u)*p[0];
vec2 b11 = u*p[2] + (1-u)*p[1];
vec2 b20 = v*b11 + (1-v)*b10;
return(b20);
}
void quadratic_slice(vec2 p[4], float s0, float s1, out vec2 sp[4])
{
/*NOTE: using blossoms to compute sub-curve control points ensure that the fourth point
of sub-curve (s0, s1) and the first point of sub-curve (s1, s3) match.
However, due to numerical errors, the evaluation of B(s=0) might not be equal to
p[0] (and likewise, B(s=1) might not equal p[3]).
We handle that case explicitly to ensure that we don't create gaps in the paths.
*/
sp[0] = (s0 == 0) ? p[0] : quadratic_blossom(p, s0, s0);
sp[1] = quadratic_blossom(p, s0, s1);
sp[2] = (s1 == 1) ? p[2] : quadratic_blossom(p, s1, s1);
}
int quadratic_monotonize(vec2 p[4], out float splits[4])
{
//NOTE: compute split points
int count = 0;
splits[0] = 0;
count++;
vec2 r = (p[0] - p[1])/(p[2] - 2*p[1] + p[0]);
if(r.x > r.y)
{
float tmp = r.x;
r.x = r.y;
r.y = tmp;
}
if(r.x > 0 && r.x < 1)
{
splits[count] = r.x;
count++;
}
if(r.y > 0 && r.y < 1)
{
splits[count] = r.y;
count++;
}
splits[count] = 1;
count++;
return(count);
}
mat3 barycentric_matrix(vec2 v0, vec2 v1, vec2 v2)
{
float det = v0.x*(v1.y-v2.y) + v1.x*(v2.y-v0.y) + v2.x*(v0.y - v1.y);
mat3 B = {{v1.y - v2.y, v2.y-v0.y, v0.y-v1.y},
{v2.x - v1.x, v0.x-v2.x, v1.x-v0.x},
{v1.x*v2.y-v2.x*v1.y, v2.x*v0.y-v0.x*v2.y, v0.x*v1.y-v1.x*v0.y}};
B *= (1/det);
return(B);
}
void quadratic_emit(vec2 p[4], int pathIndex)
{
int segIndex = push_segment(p, OC_GL_QUADRATIC, pathIndex);
if(segIndex < segmentBuffer.elements.length())
{
//NOTE: compute implicit equation matrix
float det = p[0].x*(p[1].y-p[2].y) + p[1].x*(p[2].y-p[0].y) + p[2].x*(p[0].y - p[1].y);
float a = p[0].y - p[1].y + 0.5*(p[2].y - p[0].y);
float b = p[1].x - p[0].x + 0.5*(p[0].x - p[2].x);
float c = p[0].x*p[1].y - p[1].x*p[0].y + 0.5*(p[2].x*p[0].y - p[0].x*p[2].y);
float d = p[0].y - p[1].y;
float e = p[1].x - p[0].x;
float f = p[0].x*p[1].y - p[1].x*p[0].y;
float flip = ( segmentBuffer.elements[segIndex].config == OC_GL_TL
|| segmentBuffer.elements[segIndex].config == OC_GL_BL)? -1 : 1;
float g = flip*(p[2].x*(p[0].y - p[1].y) + p[0].x*(p[1].y - p[2].y) + p[1].x*(p[2].y - p[0].y));
segmentBuffer.elements[segIndex].implicitMatrix = (1/det)*mat3(a, d, 0.,
b, e, 0.,
c, f, g);
segmentBuffer.elements[segIndex].hullVertex = p[1];
bin_to_tiles(segIndex);
}
}
void quadratic_setup(vec2 p[4], int pathIndex)
{
float splits[4];
int splitCount = quadratic_monotonize(p, splits);
//NOTE: produce bézier curve for each consecutive pair of roots
for(int sliceIndex=0; sliceIndex<splitCount-1; sliceIndex++)
{
vec2 sp[4];
quadratic_slice(p, splits[sliceIndex], splits[sliceIndex+1], sp);
quadratic_emit(sp, pathIndex);
}
}
int quadratic_roots_with_det(float a, float b, float c, float det, out float r[2])
{
int count = 0;
if(a == 0)
{
if(b != 0)
{
count = 1;
r[0] = -c/b;
}
}
else
{
b /= 2.0;
if(det >= 0)
{
count = (det == 0) ? 1 : 2;
if(b > 0)
{
float q = b + sqrt(det);
r[0] = -c/q;
r[1] = -q/a;
}
else if(b < 0)
{
float q = -b + sqrt(det);
r[0] = q/a;
r[1] = c/q;
}
else
{
float q = sqrt(-a*c);
if(abs(a) >= abs(c))
{
r[0] = q/a;
r[1] = -q/a;
}
else
{
r[0] = -c/q;
r[1] = c/q;
}
}
}
}
if(count>1 && r[0] > r[1])
{
float tmp = r[0];
r[0] = r[1];
r[1] = tmp;
}
return(count);
}
int quadratic_roots(float a, float b, float c, out float r[2])
{
float det = square(b)/4. - a*c;
return(quadratic_roots_with_det(a, b, c, det, r));
}
vec2 cubic_blossom(vec2 p[4], float u, float v, float w)
{
vec2 b10 = u*p[1] + (1-u)*p[0];
vec2 b11 = u*p[2] + (1-u)*p[1];
vec2 b12 = u*p[3] + (1-u)*p[2];
vec2 b20 = v*b11 + (1-v)*b10;
vec2 b21 = v*b12 + (1-v)*b11;
vec2 b30 = w*b21 + (1-w)*b20;
return(b30);
}
void cubic_slice(vec2 p[4], float s0, float s1, out vec2 sp[4])
{
/*NOTE: using blossoms to compute sub-curve control points ensure that the fourth point
of sub-curve (s0, s1) and the first point of sub-curve (s1, s3) match.
However, due to numerical errors, the evaluation of B(s=0) might not be equal to
p[0] (and likewise, B(s=1) might not equal p[3]).
We handle that case explicitly to ensure that we don't create gaps in the paths.
*/
sp[0] = (s0 == 0) ? p[0] : cubic_blossom(p, s0, s0, s0);
sp[1] = cubic_blossom(p, s0, s0, s1);
sp[2] = cubic_blossom(p, s0, s1, s1);
sp[3] = (s1 == 1) ? p[3] : cubic_blossom(p, s1, s1, s1);
}
#define CUBIC_ERROR 0
#define CUBIC_SERPENTINE 1
#define CUBIC_CUSP 2
#define CUBIC_CUSP_INFINITY 3
#define CUBIC_LOOP 4
#define CUBIC_DEGENERATE_QUADRATIC 5
#define CUBIC_DEGENERATE_LINE 6
struct cubic_info
{
int kind;
mat4 K;
vec2 ts[2];
float d1;
float d2;
float d3;
};
cubic_info cubic_classify(vec2 c[4])
{
cubic_info result;
result.kind = CUBIC_ERROR;
mat4 F;
/*NOTE(martin):
now, compute determinants d0, d1, d2, d3, which gives the coefficients of the
inflection points polynomial:
I(t, s) = d0*t^3 - 3*d1*t^2*s + 3*d2*t*s^2 - d3*s^3
The roots of this polynomial are the inflection points of the parametric curve, in homogeneous
coordinates (ie we can have an inflection point at inifinity with s=0).
|x3 y3 w3| |x3 y3 w3| |x3 y3 w3| |x2 y2 w2|
d0 = det |x2 y2 w2| d1 = -det |x2 y2 w2| d2 = det |x1 y1 w1| d3 = -det |x1 y1 w1|
|x1 y1 w1| |x0 y0 w0| |x0 y0 w0| |x0 y0 w0|
In our case, the pi.w equal 1 (no point at infinity), so _in_the_power_basis_, w1 = w2 = w3 = 0 and w0 = 1
(which also means d0 = 0)
//WARN: there seems to be a mismatch between the signs of the d_i and the orientation test in the Loop-Blinn paper?
// flipping the sign of the d_i doesn't change the roots (and the implicit matrix), but it does change the orientation.
// Keeping the signs of the paper puts the interior on the left of parametric travel, unlike what's stated in the paper.
// this may very well be an error on my part that's cancelled by flipping the signs of the d_i though!
*/
float d1 = -(c[3].y*c[2].x - c[3].x*c[2].y);
float d2 = -(c[3].x*c[1].y - c[3].y*c[1].x);
float d3 = -(c[2].y*c[1].x - c[2].x*c[1].y);
result.d1 = d1;
result.d2 = d2;
result.d3 = d3;
//NOTE(martin): compute the second factor of the discriminant discr(I) = d1^2*(3*d2^2 - 4*d3*d1)
float discrFactor2 = 3.0*square(d2) - 4.0*d3*d1;
//NOTE(martin): each following case gives the number of roots, hence the category of the parametric curve
if(abs(d1) <= 1e-6 && abs(d2) <= 1e-6 && abs(d3) > 1e-6)
{
//NOTE(martin): quadratic degenerate case
//NOTE(martin): compute quadratic curve control point, which is at p0 + 1.5*(p1-p0) = 1.5*p1 - 0.5*p0
result.kind = CUBIC_DEGENERATE_QUADRATIC;
}
else if( (discrFactor2 > 0 && abs(d1) > 1e-6)
||(discrFactor2 == 0 && abs(d1) > 1e-6))
{
//NOTE(martin): serpentine curve or cusp with inflection at infinity
// (these two cases are handled the same way).
//NOTE(martin): compute the solutions (tl, sl), (tm, sm), and (tn, sn) of the inflection point equation
float tmtl[2];
quadratic_roots_with_det(1, -2*d2, (4./3.*d1*d3), (1./3.)*discrFactor2, tmtl);
float tm = tmtl[0];
float sm = 2*d1;
float tl = tmtl[1];
float sl = 2*d1;
float invNorm = 1/sqrt(square(tm) + square(sm));
tm *= invNorm;
sm *= invNorm;
invNorm = 1/sqrt(square(tl) + square(sl));
tl *= invNorm;
sl *= invNorm;
/*NOTE(martin):
the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F:
| tl*tm tl^3 tm^3 1 |
| -sm*tl - sl*tm -3sl*tl^2 -3*sm*tm^2 0 |
| sl*sm 3*sl^2*tl 3*sm^2*tm 0 |
| 0 -sl^3 -sm^3 0 |
*/
result.kind = (discrFactor2 > 0 && d1 != 0) ? CUBIC_SERPENTINE : CUBIC_CUSP;
F = mat4(tl*tm, -sm*tl-sl*tm, sl*sm, 0,
cube(tl), -3*sl*square(tl), 3*square(sl)*tl, -cube(sl),
cube(tm), -3*sm*square(tm), 3*square(sm)*tm, -cube(sm),
1, 0, 0, 0);
result.ts[0] = vec2(tm, sm);
result.ts[1] = vec2(tl, sl);
}
else if(discrFactor2 < 0 && abs(d1) > 1e-6)
{
//NOTE(martin): loop curve
result.kind = CUBIC_LOOP;
float tetd[2];
quadratic_roots_with_det(1, -2*d2, 4*(square(d2)-d1*d3), -discrFactor2, tetd);
float td = tetd[1];
float sd = 2*d1;
float te = tetd[0];
float se = 2*d1;
float invNorm = 1/sqrt(square(td) + square(sd));
td *= invNorm;
sd *= invNorm;
invNorm = 1/sqrt(square(te) + square(se));
te *= invNorm;
se *= invNorm;
/*NOTE(martin):
the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F:
| td*te td^2*te td*te^2 1 |
| -se*td - sd*te -se*td^2 - 2sd*te*td -sd*te^2 - 2*se*td*te 0 |
| sd*se te*sd^2 + 2*se*td*sd td*se^2 + 2*sd*te*se 0 |
| 0 -sd^2*se -sd*se^2 0 |
*/
F = mat4(td*te, -se*td-sd*te, sd*se, 0,
square(td)*te, -se*square(td)-2*sd*te*td, te*square(sd)+2*se*td*sd, -square(sd)*se,
td*square(te), -sd*square(te)-2*se*td*te, td*square(se)+2*sd*te*se, -sd*square(se),
1, 0, 0, 0);
result.ts[0] = vec2(td, sd);
result.ts[1] = vec2(te, se);
}
else if(d2 != 0)
{
//NOTE(martin): cusp with cusp at infinity
float tl = d3;
float sl = 3*d2;
float invNorm = 1/sqrt(square(tl)+square(sl));
tl *= invNorm;
sl *= invNorm;
/*NOTE(martin):
the power basis coefficients of points k,l,m,n are collected into the rows of the 4x4 matrix F:
| tl tl^3 1 1 |
| -sl -3sl*tl^2 0 0 |
| 0 3*sl^2*tl 0 0 |
| 0 -sl^3 0 0 |
*/
result.kind = CUBIC_CUSP_INFINITY;
F = mat4(tl, -sl, 0, 0,
cube(tl), -3*sl*square(tl), 3*square(sl)*tl, -cube(sl),
1, 0, 0, 0,
1, 0, 0, 0);
result.ts[0] = vec2(tl, sl);
result.ts[1] = vec2(0, 0);
}
else
{
//NOTE(martin): line or point degenerate case
result.kind = CUBIC_DEGENERATE_LINE;
}
/*
F is then multiplied by M3^(-1) on the left which yelds the bezier coefficients k, l, m, n
at the control points.
| 1 0 0 0 |
M3^(-1) = | 1 1/3 0 0 |
| 1 2/3 1/3 0 |
| 1 1 1 1 |
*/
mat4 invM3 = mat4(1, 1, 1, 1,
0, 1./3., 2./3., 1,
0, 0, 1./3., 1,
0, 0, 0, 1);
result.K = transpose(invM3*F);
return(result);
}
vec2 select_hull_vertex(vec2 p0, vec2 p1, vec2 p2, vec2 p3)
{
/*NOTE: check intersection of lines (p1-p0) and (p3-p2)
P = p0 + u(p1-p0)
P = p2 + w(p3-p2)
control points are inside a right triangle so we should always find an intersection
*/
vec2 pm;
float det = (p1.x - p0.x)*(p3.y - p2.y) - (p1.y - p0.y)*(p3.x - p2.x);
float sqrNorm0 = dot(p1-p0, p1-p0);
float sqrNorm1 = dot(p2-p3, p2-p3);
if(abs(det) < 1e-3 || sqrNorm0 < 0.1 || sqrNorm1 < 0.1)
{
if(sqrNorm0 < sqrNorm1)
{
pm = p2;
}
else
{
pm = p1;
}
}
else
{
float u = ((p0.x - p2.x)*(p2.y - p3.y) - (p0.y - p2.y)*(p2.x - p3.x))/det;
pm = p0 + u*(p1-p0);
}
return(pm);
}
void cubic_emit(cubic_info curve, vec2 p[4], float s0, float s1, vec2 sp[4], int pathIndex)
{
int segIndex = push_segment(sp, OC_GL_CUBIC, pathIndex);
if(segIndex < segmentBuffer.elements.length())
{
vec2 v0 = p[0];
vec2 v1 = p[3];
vec2 v2;
mat3 K;
//TODO: haul that up in caller
float sqrNorm0 = dot(p[1]-p[0], p[1]-p[0]);
float sqrNorm1 = dot(p[2]-p[3], p[2]-p[3]);
if(dot(p[0]-p[3], p[0]-p[3]) > 1e-5)
{
if(sqrNorm0 >= sqrNorm1)
{
v2 = p[1];
K = mat3(curve.K[0].xyz, curve.K[3].xyz, curve.K[1].xyz);
}
else
{
v2 = p[2];
K = mat3(curve.K[0].xyz, curve.K[3].xyz, curve.K[2].xyz);
}
}
else
{
v1 = p[1];
v2 = p[2];
K = mat3(curve.K[0].xyz, curve.K[1].xyz, curve.K[2].xyz);
}
//NOTE: set matrices
//TODO: should we compute matrix relative to a base point to avoid loss of precision
// when computing barycentric matrix?
mat3 B = barycentric_matrix(v0, v1, v2);
segmentBuffer.elements[segIndex].implicitMatrix = K*B;
segmentBuffer.elements[segIndex].hullVertex = select_hull_vertex(sp[0], sp[1], sp[2], sp[3]);
//NOTE: compute sign flip
segmentBuffer.elements[segIndex].sign = 1;
if( curve.kind == CUBIC_SERPENTINE
|| curve.kind == CUBIC_CUSP)
{
segmentBuffer.elements[segIndex].sign = (curve.d1 < 0)? -1 : 1;
}
else if(curve.kind == CUBIC_LOOP)
{
float d1 = curve.d1;
float d2 = curve.d2;
float d3 = curve.d3;
float H0 = d3*d1-square(d2) + d1*d2*s0 - square(d1)*square(s0);
float H1 = d3*d1-square(d2) + d1*d2*s1 - square(d1)*square(s1);
float H = (abs(H0) > abs(H1)) ? H0 : H1;
segmentBuffer.elements[segIndex].sign = (H*d1 > 0) ? -1 : 1;
}
if(sp[3].y > sp[0].y)
{
segmentBuffer.elements[segIndex].sign *= -1;
}
//NOTE: bin to tiles
bin_to_tiles(segIndex);
}
}
void cubic_setup(vec2 p[4], int pathIndex)
{
/*NOTE(martin): first convert the control points to power basis, multiplying by M3
| 1 0 0 0| |p0| |c0|
M3 = |-3 3 0 0|, B = |p1|, C = |c1| = M3*B
| 3 -6 3 0| |p2| |c2|
|-1 3 -3 1| |p3| |c3|
*/
vec2 c[4] = {
p[0],
3.0*(p[1] - p[0]),
3.0*(p[0] + p[2] - 2*p[1]),
3.0*(p[1] - p[2]) + p[3] - p[0]};
//NOTE: get classification, implicit matrix, double points and inflection points
cubic_info curve = cubic_classify(c);
if(curve.kind == CUBIC_DEGENERATE_LINE)
{
vec2 l[4] = {p[0], p[3], vec2(0), vec2(0)};
line_setup(l, pathIndex);
return;
}
else if(curve.kind == CUBIC_DEGENERATE_QUADRATIC)
{
vec2 quadPoint = vec2(1.5*p[1].x - 0.5*p[0].x, 1.5*p[1].y - 0.5*p[0].y);
vec2 q[4] = {p[0], quadPoint, p[3], vec2(0)};
quadratic_setup(q, pathIndex);
return;
}
//NOTE: get the roots of B'(s) = 3.c3.s^2 + 2.c2.s + c1
float rootsX[2];
int rootCountX = quadratic_roots(3*c[3].x, 2*c[2].x, c[1].x, rootsX);
float rootsY[2];
int rootCountY = quadratic_roots(3*c[3].y, 2*c[2].y, c[1].y, rootsY);
float roots[6];
for(int i=0; i<rootCountX; i++)
{
roots[i] = rootsX[i];
}
for(int i=0; i<rootCountY; i++)
{
roots[i+rootCountX] = rootsY[i];
}
//NOTE: add double points and inflection points to roots if finite
int rootCount = rootCountX + rootCountY;
for(int i=0; i<2; i++)
{
if(curve.ts[i].y != 0)
{
roots[rootCount] = curve.ts[i].x / curve.ts[i].y;
rootCount++;
}
}
//NOTE: sort roots
for(int i=1; i<rootCount; i++)
{
float tmp = roots[i];
int j = i-1;
while(j>=0 && roots[j]>tmp)
{
roots[j+1] = roots[j];
j--;
}
roots[j+1] = tmp;
}
//NOTE: compute split points
float splits[8];
int splitCount = 0;
splits[0] = 0;
splitCount++;
for(int i=0; i<rootCount; i++)
{
if(roots[i] > 0 && roots[i] < 1)
{
splits[splitCount] = roots[i];
splitCount++;
}
}
splits[splitCount] = 1;
splitCount++;
//NOTE: for each monotonic segment, compute hull matrix and sign, and emit segment
for(int sliceIndex=0; sliceIndex<splitCount-1; sliceIndex++)
{
float s0 = splits[sliceIndex];
float s1 = splits[sliceIndex+1];
vec2 sp[4];
cubic_slice(p, s0, s1, sp);
cubic_emit(curve, p, s0, s1, sp, pathIndex);
}
}
void main()
{
int eltIndex = int(gl_WorkGroupID.x);
oc_gl_path_elt elt = elementBuffer.elements[elementBufferStart + eltIndex];
switch(elt.kind)
{
case OC_GL_LINE:
{
vec2 p[4] = {elt.p[0]*scale, elt.p[1]*scale, vec2(0), vec2(0)};
line_setup(p, elt.pathIndex);
} break;
case OC_GL_QUADRATIC:
{
vec2 p[4] = {elt.p[0]*scale, elt.p[1]*scale, elt.p[2]*scale, vec2(0)};
quadratic_setup(p, elt.pathIndex);
} break;
case OC_GL_CUBIC:
{
vec2 p[4] = {elt.p[0]*scale, elt.p[1]*scale, elt.p[2]*scale, elt.p[3]*scale};
cubic_setup(p, elt.pathIndex);
} break;
default:
break;
}
}